The search functionality is under construction.

Keyword Search Result

[Keyword] stereo matching(14hit)

1-14hit
  • RT-libSGM: FPGA-Oriented Real-Time Stereo Matching System with High Scalability

    Kaijie WEI  Yuki KUNO  Masatoshi ARAI  Hideharu AMANO  

     
    PAPER-Computer System

      Pubricized:
    2022/12/07
      Vol:
    E106-D No:3
      Page(s):
    337-348

    Stereo depth estimation has become an attractive topic in the computer vision field. Although various algorithms strive to optimize the speed and the precision of estimation, the energy cost of a system is also an essential metric for an embedded system. Among these various algorithms, Semi-Global Matching (SGM) has been a popular choice for some real-world applications because of its accuracy-and-speed balance. However, its power consumption makes it difficult to be applied to an embedded system. Thus, we propose a robust stereo matching system, RT-libSGM, working on the Xilinx Field-Programmable Gate Array (FPGA) platforms. The dedicated design of each module optimizes the speed of the entire system while ensuring the flexibility of the system structure. Through an evaluation on a Zynq FPGA board called M-KUBOS, RT-libSGM achieves state-of-the-art performance with lower power consumption. Compared with the benchmark design (libSGM) working on the Tegra X2 GPU, RT-libSGM runs more than 2× faster at a much lower energy cost.

  • Asymmetric Learning for Stereo Matching Cost Computation

    Zhongjian MA  Dongzhen HUANG  Baoqing LI  Xiaobing YUAN  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/07/13
      Vol:
    E103-D No:10
      Page(s):
    2162-2167

    Current stereo matching methods benefit a lot from the precise stereo estimation with Convolutional Neural Networks (CNNs). Nevertheless, patch-based siamese networks rely on the implicit assumption of constant depth within a window, which does not hold for slanted surfaces. Existing methods for handling slanted patches focus on post-processing. In contrast, we propose a novel module for matching cost networks to overcome this bias. Slanted objects appear horizontally stretched between stereo pairs, suggesting that the feature extraction in the horizontal direction should be different from that in the vertical direction. To tackle this distortion, we utilize asymmetric convolutions in our proposed module. Experimental results show that the proposed module in matching cost networks can achieve higher accuracy with fewer parameters compared to conventional methods.

  • Using Temporal Correlation to Optimize Stereo Matching in Video Sequences

    Ming LI  Li SHI  Xudong CHEN  Sidan DU  Yang LI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2019/03/01
      Vol:
    E102-D No:6
      Page(s):
    1183-1196

    The large computational complexity makes stereo matching a big challenge in real-time application scenario. The problem of stereo matching in a video sequence is slightly different with that in a still image because there exists temporal correlation among video frames. However, no existing method considered temporal consistency of disparity for algorithm acceleration. In this work, we proposed a scheme called the dynamic disparity range (DDR) to optimize matching cost calculation and cost aggregation steps by narrowing disparity searching range, and a scheme called temporal cost aggregation path to optimize the cost aggregation step. Based on the schemes, we proposed the DDR-SGM and the DDR-MCCNN algorithms for the stereo matching in video sequences. Evaluation results showed that the proposed algorithms significantly reduced the computational complexity with only very slight loss of accuracy. We proved that the proposed optimizations for the stereo matching are effective and the temporal consistency in stereo video is highly useful for either improving accuracy or reducing computational complexity.

  • Feature Ensemble Network with Occlusion Disambiguation for Accurate Patch-Based Stereo Matching

    Xiaoqing YE  Jiamao LI  Han WANG  Xiaolin ZHANG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2017/09/14
      Vol:
    E100-D No:12
      Page(s):
    3077-3080

    Accurate stereo matching remains a challenging problem in case of weakly-textured areas, discontinuities and occlusions. In this letter, a novel stereo matching method, consisting of leveraging feature ensemble network to compute matching cost, error detection network to predict outliers and priority-based occlusion disambiguation for refinement, is presented. Experiments on the Middlebury benchmark demonstrate that the proposed method yields competitive results against the state-of-the-art algorithms.

  • Stereo Matching Based on Efficient Image-Guided Cost Aggregation

    Yunlong ZHAN  Yuzhang GU  Xiaolin ZHANG  Lei QU  Jiatian PI  Xiaoxia HUANG  Yingguan WANG  Jufeng LUO  Yunzhou QIU  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2015/12/09
      Vol:
    E99-D No:3
      Page(s):
    781-784

    Cost aggregation is one of the most important steps in local stereo matching, while it is difficult to fulfill both accuracy and speed. In this letter, a novel cost aggregation, consisting of guidance image, fast aggregation function and simplified scan-line optimization, is developed. Experiments demonstrate that the proposed algorithm has competitive performance compared with the state-of-art aggregation methods on 32 Middlebury stereo datasets in both accuracy and speed.

  • Implementation and Optimization of Image Processing Algorithms on Embedded GPU

    Nitin SINGHAL  Jin Woo YOO  Ho Yeol CHOI  In Kyu PARK  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E95-D No:5
      Page(s):
    1475-1484

    In this paper, we analyze the key factors underlying the implementation, evaluation, and optimization of image processing and computer vision algorithms on embedded GPU using OpenGL ES 2.0 shader model. First, we present the characteristics of the embedded GPU and its inherent advantage when compared to embedded CPU. Additionally, we propose techniques to achieve increased performance with optimized shader design. To show the effectiveness of the proposed techniques, we employ cartoon-style non-photorealistic rendering (NPR), speeded-up robust feature (SURF) detection, and stereo matching as our example algorithms. Performance is evaluated in terms of the execution time and speed-up achieved in comparison with the implementation on embedded CPU.

  • An Interleaving Updating Framework of Disparity and Confidence Map for Stereo Matching

    Chenbo SHI  Guijin WANG  Xiaokang PEI  Bei HE  Xinggang LIN  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E95-D No:5
      Page(s):
    1552-1555

    In this paper, we propose an interleaving updating framework of disparity and confidence map (IUFDCM) for stereo matching to eliminate the redundant and interfere information from unreliable pixels. Compared with other propagation algorithms using matching cost as messages, IUFDCM updates the disparity map and the confidence map in an interleaving manner instead. Based on the Confidence-based Support Window (CSW), disparity map is updated adaptively to alleviate the effect of input parameters. The reassignment for unreliable pixels with larger probability keeps ground truth depending on reliable messages. Consequently, the confidence map is updated according to the previous disparity map and the left-right consistency. The top ranks on Middlebury benchmark corresponding to different error thresholds demonstrate that our algorithm is competitive with the best stereo matching algorithms at present.

  • Stereo Matching Using Local Plane Fitting in Confidence-Based Support Window

    Chenbo SHI  Guijin WANG  Xiaokang PEI  Bei HE  Xinggang LIN  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E95-D No:2
      Page(s):
    699-702

    This paper addresses stereo matching under scenarios of smooth region and obviously slant plane. We explore the flexible handling of color disparity, spatial relation and the reliability of matching pixels in support windows. Building upon these key ingredients, a robust stereo matching algorithm using local plane fitting by Confidence-based Support Window (CSW) is presented. For each CSW, only these pixels with high confidence are employed to estimate optimal disparity plane. Considering that RANSAC has shown to be robust in suppressing the disturbance resulting from outliers, we employ it to solve local plane fitting problem. Compared with the state of the art local methods in the computer vision community, our approach achieves the better performance and time efficiency on the Middlebury benchmark.

  • Pedestrian Detection with Sparse Depth Estimation

    Yu WANG  Jien KATO  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E94-D No:8
      Page(s):
    1690-1699

    In this paper, we deal with the pedestrian detection task in outdoor scenes. Because of the complexity of such scenes, generally used gradient-feature-based detectors do not work well on them. We propose to use sparse 3D depth information as an additional cue to do the detection task, in order to achieve a fast improvement in performance. Our proposed method uses a probabilistic model to integrate image-feature-based classification with sparse depth estimation. Benefiting from the depth estimates, we map the prior distribution of human's actual height onto the image, and update the image-feature-based classification result probabilistically. We have two contributions in this paper: 1) a simplified graphical model which can efficiently integrate depth cue in detection; and 2) a sparse depth estimation method which could provide fast and reliable estimation of depth information. An experiment shows that our method provides a promising enhancement over baseline detector within minimal additional time.

  • A 3D Feature-Based Binocular Tracking Algorithm

    Guang TIAN  Feihu QI  Masatoshi KIMACHI  Yue WU  Takashi IKETANI  

     
    PAPER-Tracking

      Vol:
    E89-D No:7
      Page(s):
    2142-2149

    This paper presents a 3D feature-based binocular tracking algorithm for tracking crowded people indoors. The algorithm consists of a two stage 3D feature points grouping method and a robust 3D feature-based tracking method. The two stage 3D feature points grouping method can use kernel-based ISODATA method to detect people accurately even though the part or almost full occlusion occurs among people in surveillance area. The robust 3D feature-based Tracking method combines interacting multiple model (IMM) method with a cascade multiple feature data association method. The robust 3D feature-based tracking method not only manages the generation and disappearance of a trajectory, but also can deal with the interaction of people and track people maneuvering. Experimental results demonstrate the robustness and efficiency of the proposed framework. It is real-time and not sensitive to the variable frame to frame interval time. It also can deal with the occlusion of people and do well in those cases that people rotate and wriggle.

  • Robust Vehicle Detection under Poor Environmental Conditions for Rear and Side Surveillance

    Osafumi NAKAYAMA  Morito SHIOHARA  Shigeru SASAKI  Tomonobu TAKASHIMA  Daisuke UENO  

     
    PAPER-ITS

      Vol:
    E87-D No:1
      Page(s):
    97-104

    During the period from dusk to dark, when it is difficult for drivers to see other vehicles, or when visibility is poor due to rain, snow, etc., the contrast between nearby vehicles and the background is lower. Under such conditions, conventional surveillance systems have difficulty detecting the outline of nearby vehicles and may thus fail to recognize them. To solve this problem, we have developed a rear and side surveillance system for vehicles that uses image processing. The system uses two stereo cameras to monitor the areas to the rear and sides of a vehicle, i.e., a driver's blind spots, and to detect the positions and relative speeds of other vehicles. The proposed system can estimate the shape of a vehicle from a partial outline of it, thus identifying the vehicle by filling in the missing parts of the vehicle outline. Testing of the system under various environmental conditions showed that the rate of errors (false and missed detection) in detecting approaching vehicles was reduced to less than 10%, even under conditions that are problematic for conventional processing.

  • Development of 3-D Stereo Endoscopic Image Processing System

    Jeong-Hoon KIM  Jun-Young LEE  Myoung-Ho LEE  

     
    LETTER-Medical Engineering

      Vol:
    E85-D No:3
      Page(s):
    584-591

    This letter proposes a 3-D stereo endoscopic image processing system. Whereas a conventional 3-D stereo endoscopic system has simple monitoring functions, the proposed system gives doctors exact depth feelings by providing them depth value information, visualization, and stereo PACS viewer to aid an education, accurate diagnosis, a surgical operation, and to further apply in a robotic surgery.

  • A Segmentation-Based Multiple-Baseline Stereo (SMBS) Scheme for Acquisition of Depth in 3-D Scenes

    Takashi IMORI  Tadahiko KIMOTO  Bunpei TOUJI  Toshiaki FUJII  Masayuki TANIMOTO  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E81-D No:2
      Page(s):
    215-223

    This paper presents a new scheme to estimate depth in a natural three-dimensional scene using a multi-viewpoint image set. In the conventional Multiple-Baseline Stereo (MBS) scheme for the image set, although errors of stereo matching are somewhat reduced by using multiple stereo pairs, the use of square blocks of fixed size sometimes causes false matching, especially, in that image area where occlusion occurs and that image area of small variance of brightness levels. In the proposed scheme, the reference image is segmented into regions which are capable of being arbitrarily shaped, and a depth value is estimated for each region. Also, by comparing the image generated by projection with the original image, depth values are newly estimated in a top-down manner. Then, the error of the previous depth value is detected, and it is corrected. The results of experiments show advantages of the proposed scheme over the MBS scheme.

  • A Framework for Feature Extraction of Images by Energy Minimization

    Satoshi NAKAGAWA  Takahiro WATANABE  Yuji KUNO  

     
    PAPER

      Vol:
    E77-D No:11
      Page(s):
    1213-1218

    This paper describes a new feature extraction model (Active Model) which is extended from the active contour model (Snakes). Active Model can be applied to various energy minimizing models since it integrates most of the energy terms ever proposed into one model and also provides the new terms for multiple images such as motion and stereo images. The computational order of energy minimization process is estimated in comparison with a dynamic programming method and a greedy algorithm, and it is shown that the energy minimization process in Active Model is faster than the others. Some experimental results are also shown.