This letter proposes a novel intelligent dynamic channel assignment (DCA) scheme with small-cells to improve the system performance for uplink machine-type communications (MTC) based on OFDMA-FDD. Outdoor MTC devices (OMDs) have serious interference from indoor MTC devices (IMDs) served by small-cell access points (SAPs) with frequency reuse. Thus, in the proposed DCA scheme, the macro base station (MBS) first measures the received signal strength from both OMDs and IMDs after setting the transmission power. Then, the MBS dynamically assigns subchannels to each SAP with consideration of strong interference from IMDs to the MBS. Through simulation results, it is shown that the proposed DCA scheme outperforms other schemes in terms of the capacity of OMDs and IMDs.
Kentaro NISHIMORI Jiro HIROKAWA
A multibeam massive multiple input multiple output (MIMO) configuration employs beam selection with high power in the analog part and executes a blind algorithm such as the independent component analysis (ICA), which does not require channel state information in the digital part. Two-dimensional (2-D) multibeams are considered in actual power losses and beam steering errors regarding the multibeam patterns. However, the performance of these 2-D beams depends on the beam pattern of the multibeams, and they are not optimal multibeam patterns suitable for multibeam massive MIMO configurations. In this study, we clarify the performance difference due to the difference of the multibeam pattern and consider the multibeam pattern suitable for the system condition. Specifically, the optimal multibeam pattern was determined with the element spacing and beamwidth of the element directivity as parameters, and the effectiveness of the proposed method was verified via computer simulations.
Shohei YOSHIOKA Satoshi NAGATA
Recently connected car called Vehicle-to-Everything (V2X) has been attracted for smart automotive mobility. Among V2X technologies, cellular V2X (C-V2X) discussed and specified in 3rd generation partnership project (3GPP) is generally regarded as possibly utilized one. In 3GPP, the fourth generation mobile communication system (4G) and the fifth generation (5G) including new radio (NR) provide C-V2X standards specifications. In this paper, we will introduce C-V2X standards and share our views on future C-V2X.
Kenichi KAWAMURA Akiyoshi INOKI Shouta NAKAYAMA Keisuke WAKAO Yasushi TAKATORI
A method is presented for increasing wireless LAN (WLAN) capacity in high-density environments with IEEE 802.11ax systems. We propose using coordinated scheduling of trigger frames based on our mobile cooperative control concept. High-density WLAN systems are managed by a management server, which gathers wireless environmental information from user equipment through cellular access. Hierarchical clustering of basic service sets is used to form synchronized clusters to reduce interference and increase throughput of high-density WLAN systems based on mobile cooperative control. This method increases uplink capacity by up to 19.4% and by up to 11.3% in total when WLAN access points are deployed close together. This control method is potentially effective for IEEE 802.11ax WLAN systems utilized as 5G mobile network components.
Eiji OKAMOTO Manabu MIKAMI Hitoshi YOSHINO
In fifth-generation mobile communications systems (5G), grant-free non-orthogonal multiple access (NOMA) schemes have been considered as a way to accommodate the many wireless connections required for Internet of Things (IoT) devices. In NOMA schemes, both system capacity enhancement and transmission protocol simplification are achieved, and an overload test of more than one hundred percent of the transmission samples over conducted. Multi-user shared multiple access (MUSA) has been proposed as a representative scheme for NOMA. However, the performance of MUSA has not been fully analyzed nor compared to other NOMA or orthogonal multiple access schemes. Therefore, in this study, we theoretically and numerically analyze the performance of MUSA in uplink fading environments and compare it with orthogonal frequency division multiple access (OFDMA), space division multiple access-based OFDMA, low-density signature, and sparse code multiple access. The characteristics and superiority of MUSA are then clarified.
Pengxiang LI Yuehong GAO Zhidu LI Hongwen YANG
This paper analyzes the performance of single-cell massive multiple-input multiple-output (MIMO) systems with non-orthogonal pilots. Specifically, closed-form expressions of the normalized channel estimation error and achievable uplink capacity are derived for both least squares (LS) and minimum mean square error (MMSE) estimation. Then a pilot reconstruction scheme based on orthogonal Procrustes principle (OPP) is provided to reduce the total normalized mean square error (NMSE) of channel estimations. With these reconstructed pilots, a two-step pilot assignment method is formulated by considering the correlation coefficient among pilots to reduce the maximum NMSE. Based on this assignment method, a step-by-step pilot power allocation scheme is further proposed to improve the average uplink signal-to-interference and noise ratio (SINR). At last, simulation results demonstrate the superiority of the proposed approaches.
Xu BAO Wence ZHANG Jisheng DAI Jianxin DAI
In this paper, we devise low-complexity uplink detection algorithms for Massive MIMO systems. We treat the uplink detection as an ill-posed problem and adopt the Landweber Method to solve it. In order to reduce the computational complexity and increase the convergence rate, we propose improved Landweber Method with optimal relax factor (ILM-O) algorithm. In addition, to reduce the order of Landweber Method by introducing a set of coefficients, we propose reduced order Landweber Method (ROLM) algorithm. An analysis on the convergence and the complexity is provided. Numerical results demonstrate that the proposed algorithms outperform the existing algorithm.
This paper proposes a novel access technique that enables uplink multiuser multiple input multiple output (MU-MIMO) access with small overhead in distributed wireless networks. The proposed access technique introduces a probe packet that is sent to all terminals to judge whether they have the right to transmit their signals or not. The probe packet guarantees high quality MU-MIMO signal transmission when a minimum mean square error (MMSE) filter is applied at the access point, which results in high frequency utilization efficiency. Computer simulation reveals that the proposed access achieves more than twice of the capacity obtained by the traditional carrier sense multiple access/collision avoidance (CSMA/CA) with a single user MIMO, when the access point with 5 antennas is surrounded by the terminals with 2 antennas.
In this paper, we present self-interference (SI) cancellation techniques in the digital domain for in-band full-duplex systems employing orthogonal frequency division multiple access (OFDMA) in the downlink (DL) and single-carrier frequency division multiple access (SC-FDMA) in the uplink (UL), as in the long-term evolution (LTE) system. The proposed techniques use UL subcarrier nulling to accurately estimate SI channels without any UL interference. In addition, by exploiting the structures of the transmitter imperfection and the known or estimated parameters associated with the imperfection, the techniques can further improve the accuracy of SI channel estimation. We also analytically derive the lower bound of the mean square error (MSE) performance and the upper bound of the signal-to-interference-plus-noise ratio (SINR) performance for the techniques, and show that the performance of the techniques are close to the bounds. Furthermore, by utilizing the SI channel estimates and the nonlinear signal components of the SI caused by the imperfection to effectively eliminate the SI, the proposed techniques can achieve SINR performance very close to the one in perfect SI cancellation. Finally, because the SI channel estimation of the proposed techniques is performed in the time domain, the techniques do not require symbol time alignment between SI and UL symbols.
Seungil MOON Thant Zin OO S. M. Ahsan KAZMI Bang Ju PARK Choong Seon HONG
The increase in network access devices and demand for high quality of service (QoS) by the users have led to insufficient capacity for the network operators. Moreover, the existing control equipment and mechanisms are not flexible and agile enough for the dynamically changing environment of heterogeneous cellular networks (HetNets). This non-agile control plane is hard to scale with ever increasing traffic demand and has become the performance bottleneck. Furthermore, the new HetNet architecture requires tight coordination and cooperation for the densely deployed small cell base stations, particularly for interference mitigation and dynamic frequency reuse and sharing. These issues further complicate the existing control plane and can cause serious inefficiencies in terms of users' quality of experience and network performance. This article presents an SDN control framework for energy efficient downlink/uplink scheduling in HetNets. The framework decouples the control plane from data plane by means of a logically centralized controller with distributed agents implemented in separate entities of the network (users and base stations). The scheduling problem consists of three sub-problems: (i) user association, (ii) power control, (iii) resource allocation and (iv) interference mitigation. Moreover, these sub-problems are coupled and must be solved simultaneously. We formulate the DL/UL scheduling in HetNet as an optimization problem and use the Markov approximation framework to propose a distributed economical algorithm. Then, we divide the algorithm into three sub-routines for (i) user association, (ii) power control, (iii) resource allocation and (iv) interference mitigation. These sub-routines are then implemented on different agents of the SDN framework. We run extensive simulation to validate our proposal and finally, present the performance analysis.
Anxin LI Anass BENJEBBOUR Xiaohang CHEN Huiling JIANG Hidetoshi KAYAMA
Non-orthogonal multiple access (NOMA) utilizing the power domain and advanced receiver has been considered as one promising multiple access technology for further cellular enhancements toward the 5th generation (5G) mobile communications system. Most of the existing investigations into NOMA focus on the combination of NOMA with orthogonal frequency division multiple access (OFDMA) for either downlink or uplink. In this paper, we investigate NOMA for uplink with single carrier-frequency division multiple access (SC-FDMA) being used. Differently from OFDMA, SC-FDMA requires consecutive resource allocation to a user equipment (UE) in order to achieve low peak to average power ratio (PAPR) transmission by the UE. Therefore, sophisticated designs of scheduling algorithm for NOMA with SC-FDMA are needed. To this end, this paper investigates the key issues of uplink NOMA scheduling such as UE grouping method and resource widening strategy. Because the optimal schemes have high computational complexity, novel schemes with low computational complexity are proposed for practical usage for uplink resource allocation of NOMA with SC-FDMA. On the basis of the proposed scheduling schemes, the performance of NOMA is investigated by system-level simulations in order to provide insights into the suitability of using NOMA for uplink radio access. Key issues impacting NOMA performance are evaluated and analyzed, such as scheduling granularity, UE number and the combination with fractional frequency reuse (FFR). Simulation results verify the effectiveness of the proposed algorithms and show that NOMA is a promising radio access technology for 5G systems.
Kenichi HIGUCHI Yoshiko SAITO Seigo NAKAO
We propose an inter-cell interference coordination (ICIC) method that employs inter-cell coordinated transmission power control (TPC) based on inter-cell interference power in addition to conventional received signal power-based TPC in the cellular uplink. We assume orthogonal multiple-access as is used in 3GPP LTE. In the proposed method, an ICIC effect similar to that for conventional fractional frequency reuse (FFR) is obtained. This is achieved by coordinating the allowable inter-cell interference power level at the appropriate frequency blocks within the system bandwidth among neighboring cells in a semi-static manner. Different from conventional FFR, since all users within a cell can access all the frequency blocks, the reduction in multiuser diversity gain is abated. Computer simulation results show that the proposed method enhances both the cell-edge and average user throughput simultaneously compared to conventional universal frequency reuse (UFR) and FFR.
Joohyun LEE Bontae KOO Hyuckjae LEE
This paper presents a hardware design of high throughput, low latency preamble detector for 3GPP LTE physical random access channel (PRACH) receiver. The presented PRACH receiver uses the pipelined structure to improve the throughput of power delay profile (PDP) generation which is executed multiple times during the preamble detection. In addition, to reduce detection latency, we propose an instantaneous preamble detection method for both restricted and unrestricted set. The proposed preamble detection method can detect all existing preambles directly and instantaneously from PDP output while conducting PDP combining for restricted set. The PDP combining enables the PRACH receiver to detect preambles robustly even in severe Doppler effect or frequency error exist. Using proposed method, the worst case preamble detection latency time can be less than 1 ms with 136 MHz clock and the proposed PRACH receiver can be implemented with approximately 237k equivalent ASIC gates count or occupying 30.2% of xc6vlx130t FPGA device.
Masashi ITAGAKI Tetsuya YAMAMOTO Kazuki TAKEDA Fumiyuki ADACHI
Multi-user multi-input multi-output (MIMO) system has been attracting much attention due to its high spectrum efficiency. Non-linear MIMO signal detection methods with less computational complexity have been widely studied for single-user MIMO systems. In this paper, we investigate how a lattice reduction (LR)-aided detection and a maximum likelihood detection (MLD) employing the QR decomposition and M-algorithm (QRM-MLD), which are commonly known as non-linear MIMO signal detection methods, improve the uplink capacity of a multi-user MIMO-OFDM cellular system, compared to simple linear detection methods such as zero-forcing detection (ZFD) and minimum mean square error detection (MMSED). We show that both LR-aided linear detection and QRM-MLD can achieve higher uplink capacity than simple linear detection at the cost of moderate increase of computational complexity. Furthermore, QRM-MLD can obtain the same uplink capacity as MLD.
Tony Q. S. QUEK Kampol WORADIT Hyundong SHIN Zander LEI
Coordinated multi-point processing at multiple base stations can improve coverage, system throughput, and cell-edge throughput for future cellular systems. In this paper, we study the coordinated reception of transmitted signals at multiple MIMO base stations to exploit cooperative diversity. In particular, we propose to employ cooperative multicell automatic repeat request (ARQ) protocol via backhaul links. The attractiveness of this protocol is that processing between coordinated base stations can be made completely transparent to the mobile user, and it improves the mobile user's link reliability and throughput significantly compared to noncooperative ARQ protocol. In our proposed protocol, we consider the scenario where the multicell processing involves one of the following three schemes: decode-and-forward, amplify-and-forward, and compress-and-forward schemes. We derive the average packet error rate and throughput for these cooperative multicell ARQ protocols. Numerical results show that the cooperative multicell ARQ protocols are promising in terms of average packet error rate and throughput. Furthermore, we show that the degree of improvement depends on the type of cooperative multicell ARQ protocol employed and the operating average signal-to-noise ratio of the main and backhaul links.
Jhih-Chung CHANG Ann-Chen CHANG
In this letter, a generalized sidelobe canceller (GSC) with robustness against carrier frequency offset (CFO) is proposed for the uplink MC-CDMA system. It has been shown that a CFO will cause the spreading code mismatch and desired signal cancellation. By incorporating the corrected quiescent weight of the upper branch and blocking matrix of the lower branch, we create an efficient GSC that offers strongly counters the effect of the CFO. Significant performance improvement of the proposed GSC is demonstrated by simulation results.
In this paper, a frequency domain adaptive antenna array (FDAAA) algorithm is proposed for broadband single-carrier uplink transmissions in a cellular system. By employing AAA weight control in the frequency domain, the FDAAA receiver is able to suppress the multi-user interference (MUI) and the co-channel interference (CCI). In addition, the channel frequency selectivity can be exploited to suppress the inter-symbol interference (ISI) and to obtain frequency diversity (or the multi-path diversity). Another advantage of the FDAAA algorithm is that its performance is not affected by the spread of angles of arrival (AOA) of the received multi-path signal. In this study the structure of FDAAA receiver is discussed and the frequency domain signal-to-interference-plus-noise-ratio (SINR) after weight control is investigated. The performance of the FDAAA algorithm is confirmed by simulation results. It is shown that, the optimal FDAAA weight to obtain the best BER performance is that which fully cancels the interference when single-cell system is considered; On the other hand, when multi-cell cellular system is considered, the optimal FDAAA weight depends on both the cellular structure and the target signal to noise ratio (SNR) of transmit power control (TPC).
Tae Ho IM Mi Kyung KONG Sungwook YU Yong Soo CHO
In this letter, we propose an efficient signal detection method for uplink multiuser systems based on collaborative spatial multiplexing (CSM). The proposed method achieves near-optimal performance and shows only 0.8 dB loss at the target frame error rate (FER) of 10-2. Moreover, the error performance of each user is almost the same in the proposed method, which is an important property in a multiuser MIMO system where each user's error performance must satisfy some fixed error rate criteria.
A novel adaptive cyclic prefix (CP) transmission scheme is proposed for the uplink of orthogonal frequency division multiple access (OFDMA) systems to reduce the power consumption of mobile stations (MSs). In the proposed scheme, an MS adaptively changes its CP length in each frame, while the guard interval is maintained at a fixed duration to avoid frame synchronization problem and the interference problem with frames of other users. Using the proposed scheme, MSs can save power by not transmitting signal during the time difference between the guard interval and the duration of the adaptive CP. We numerically analyze the performance of the proposed scheme in terms of achievable capacity, the amount of power saving, and the feedback overhead of CP values. The result shows that the proposed scheme can reduce MS power consumption by about 20% with a small amount of additional feedback overhead.
Seigo NAKAO Tomohumi TAKATA Daichi IMAMURA Katsuhiko HIRAMATSU
Hybrid automatic repeat request (HARQ) is employed for the Evolved Universal Terrestrial Radio Access (E-UTRA) downlink. The base station not only decodes the ACK/NACK signals from the user equipment (UE), but also detects a termination of the transmission (DTX) of the ACK/NACK signals caused by the mis-detection of the downlink control information (DCI) at the UE side. Since ACK/NACK signals from UEs are multiplexed by CDMA, there are sometimes severe inter-code interference (ICI) effects, which significantly degrade the performance of ACK/NACK signals. In order to mitigate such ICI effects, in [1],[2], we proposed a novel phase rotation scheme on the constellations of the uplink ACK/NACK signals, and confirmed the effects on the ACK/NACK bit error rate performance; however, the previous paper did not analyze the effects of the phase rotation on the DTX detection performance. Hence, in this paper, we further analyze the effects of the phase rotation for the ACK/NACK signals in conjunction with a new DTX detection scheme which utilizes equalizer outputs, and investigate the performance of the proposed scheme by means of computer simulations.