The search functionality is under construction.

Keyword Search Result

[Keyword] wavelength division multiplexing(74hit)

1-20hit(74hit)

  • Robustness of Intensity-Modulation/Direct-Detection Secret Key Distribution against Spontaneous Raman Scattering in Wavelength-Multiplexed Systems with Existing Optical Transmission Signals

    Kyo INOUE  Daichi TERAZAWA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2023/08/28
      Vol:
    E106-B No:12
      Page(s):
    1418-1423

    Quantum key distribution or secret key distribution (SKD) has been studied to deliver a secrete key for secure communications, whose security is physically guaranteed. For practical deployment, such systems are desired to be overlaid onto existing wavelength-multiplexing transmission systems, without using a dedicated transmission line. This study analytically investigates the feasibility of the intensity-modulation/direction-detection (IM/DD) SKD scheme being wavelength-multiplexed with conventional wavelength-division-multiplexed (WDM) signals, concerning spontaneous Raman scattering light from conventional optical signals. Simulation results indicate that IM/DD SKD systems are not degraded when they are overlaid onto practically deployed dense WDM transmission systems in the C-band, owing to the feature of the IM/DD SKD scheme, which uses a signal light with an intensity level comparable to conventional optical signals unlike conventional quantum key distribution schemes.

  • MIMO Systems with Neural Networks in OFDM-Based WDM Visible Light Communications

    Naoki UMEZAWA  Saeko OSHIBA  

     
    BRIEF PAPER

      Pubricized:
    2023/05/12
      Vol:
    E106-C No:11
      Page(s):
    727-730

    In this paper, we describe a wavelength-division multiplexing visible-light communication (VLC) system using two colored light-emitting diodes (LEDs) with similar emission wavelengths. A multi-input multi-output signal-separation method using a neural network is proposed to cancel the optical cross chatter caused by the spectral overlap of LEDs. The experimental results demonstrate that signal separation using neural networks can be achieved in wavelength-multiplexed VLC systems with a bit error rate of less than 3.8×10-3 (forward error correction limit). Furthermore, the simulation results reveal that the carrier-to-noise ratio (CNR) is improved by 2dB for the successive interference canceller (SIC) compared to the zero-forcing method.

  • Neural Network Calculations at the Speed of Light Using Optical Vector-Matrix Multiplication and Optoelectronic Activation

    Naoki HATTORI  Jun SHIOMI  Yutaka MASUDA  Tohru ISHIHARA  Akihiko SHINYA  Masaya NOTOMI  

     
    PAPER

      Pubricized:
    2021/05/17
      Vol:
    E104-A No:11
      Page(s):
    1477-1487

    With the rapid progress of the integrated nanophotonics technology, the optical neural network architecture has been widely investigated. Since the optical neural network can complete the inference processing just by propagating the optical signal in the network, it is expected more than one order of magnitude faster than the electronics-only implementation of artificial neural networks (ANN). In this paper, we first propose an optical vector-matrix multiplication (VMM) circuit using wavelength division multiplexing, which enables inference processing at the speed of light with ultra-wideband. This paper next proposes optoelectronic circuit implementation for batch normalization and activation function, which significantly improves the accuracy of the inference processing without sacrificing the speed performance. Finally, using a virtual environment for machine learning and an optoelectronic circuit simulator, we demonstrate the ultra-fast and accurate operation of the optical-electronic ANN circuit.

  • Remote Pumped All Optical Wavelength Converter for Metro-Core Photonic Networks

    Ryota TSUJI  Daisuke HISANO  Ken MISHINA  Akihiro MARUTA  

     
    PAPER

      Pubricized:
    2020/05/20
      Vol:
    E103-B No:11
      Page(s):
    1282-1290

    Wavelength division multiplexing (WDM) scheme is used widely in photonic metro-core networks. In a WDM network, wavelength continuity constraint is employed to simply construct relay nodes. This constraint reduces the wavelength usage efficiency of each link. To improve the same, an all-optical wavelength converter (AO-WC) has been attracting attention in recent years. In particular, an AO-WC is a key device because it enables simultaneous conversion of multiple wavelengths of signal lights to other wavelengths, independent of the modulation format. However, each AO-WC requires installation of multiple laser sources with narrow bandwidth because the lights emitted by the laser sources are used as pump lights when the wavelengths of the signal lights are converted by the four-wave mixing (FWM) process. To reduce the number of laser sources, we propose a remote pumped AO-WC, in which the laser sources of the pump lights are aggregated into several relay nodes. When the request for the wavelength conversion from the relay node without the laser source is conveyed, the relay node with the laser source transmits the pump light through the optical link. The proposed scheme enables reduction in the number of laser sources of the pump lights. Herein we analyze the distortion of the pump light by propagating it through the optical link We also evaluate the effect of the noise in optical amplifiers and nonlinearities in optical fibers using numerical simulations employing the representative parameters for a practical WDM network.

  • Recent Progress in the Development of Large-Capacity Integrated Silicon Photonics Transceivers Open Access

    Yu TANAKA  

     
    INVITED PAPER

      Vol:
    E102-C No:4
      Page(s):
    357-363

    We report our recent progress in silicon photonics integrated device technology targeting on-chip-level large-capacity optical interconnect applications. To realize high-capacity data transmission, we successfully developed on-package-type silicon photonics integrated transceivers and demonstrated simultaneous 400 Gbps operation. 56 Gbps pulse-amplitude-modulation (PAM) 4 and wavelength-division-multiplexing technologies were also introduced to enhance the transmission capacity.

  • Simplified Iterative Decoder for Polybinary-Shaped Optical Signals in Super-Nyquist Wavelength Division Multiplexed Systems

    Shuai YUAN  Koji IGARASHI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2018/10/11
      Vol:
    E102-B No:4
      Page(s):
    818-823

    In super-Nyquist wavelength division multiplexed systems, performance of forward error correction (FEC) can be improved by an iterative decoder between a maximum likelihood decoder for polybinary shaping and an FEC decoder. The typical iterative decoder includes not only the iteration between the first and second decoders but also the internal iteration within the FEC decoder. Such two-fold loop configuration would increase the computational complexity for decoding. In this paper, we propose the simplified iterative decoder, where the internal iteration in the FEC decoder is not performed, reducing the computational complexity. We numerically evaluate the bit-error rate performance of polybinary-shaped QPSK signals in the simplified iterative decoder. The numerical results show that the FEC performance can be improved in the simplified scheme, compared with the typical iterative decoder. In addition, the performance of the simplified iterative decoder has been investigated by the extrinsic information transfer (EXIT) chart.

  • Nonlinear Phase-Shift Cancellation by Taking the Geometric Mean of WDM-Signal Phase-Conjugate Pair

    Takahisa KODAMA  Akira MIZUTORI  Takayuki KOBAYASHI  Takayuki MIZUNO  Masafumi KOGA  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2018/02/09
      Vol:
    E101-B No:8
      Page(s):
    1845-1852

    This paper investigates approaches that can cancel nonlinear phase noise effectively for the phase-conjugate pair diversity transmission of 16-QAM WDM signals through multi-core fiber. The geometric mean is introduced for the combination of the phase-conjugate pair. A numerical simulation suggests that span-by-span chromatic dispersion compensation is more effective at cancelling phase noise in long distance transmission than lumped compensation at the receiver. Simulations suggest the span-wise compensation described herein yields Q-value enhancement of 7.8 and 6.8dB for CD values of 10 and 20.6ps/nm/km, respectively, whereas the lumped compensation equivalent attains only 3.5dB. A 1050km recirculating loop experiment confirmed a Q-value enhancement of 4.1dB for 20.6ps/nm/km, span-wise compensation transmission.

  • Increasing Splitting Ratio of Extended-Reach WDM/TDM-PON by Using Central Office Sited Automatic Gain Controlled SOAs

    Masamichi FUJIWARA  Ryo KOMA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2017/02/02
      Vol:
    E100-B No:8
      Page(s):
    1388-1396

    To drastically increase the splitting ratio of extended-reach (40km span) time- and wavelength-division multiplexed passive optical networks (WDM/TDM-PONs), we modify the gain control scheme of our automatic gain controlled semiconductor optical amplifiers (AGC-SOAs) that were developed to support upstream transmission in long-reach systems. While the original AGC-SOAs are located outside the central office (CO) as repeaters, the new AGC-SOAs are located inside the CO and connected to each branch of an optical splitter in the CO. This arrangement has the potential to greatly reduce the costs of CO-sited equipment as they are shared by many more users if the new gain control scheme works properly even when the input optical powers are low. We develop a prototype and experimentally confirm its effectiveness in increasing the splitting ratio of extended-reach systems to 512.

  • Performance of All-Optical Amplify-and-Forward WDM/FSO Relaying Systems over Atmospheric Dispersive Turbulence Channels

    Phuc V. TRINH  Ngoc T. DANG  Truong C. THANG  Anh T. PHAM  

     
    PAPER

      Vol:
    E99-B No:6
      Page(s):
    1255-1264

    This paper newly proposes and theoretically analyzes the performance of multi-hop free-space optical (FSO) systems employing optical amplify-and-forward (OAF) relaying technique and wavelength division multiplexing (WDM). The proposed system can provide a low cost, low latency, high flexibility, and large bandwidth access network for multiple users in areas where installation of optical fiber is unfavorable. In WDM/FSO systems, WDM channels suffer from the interchannel crosstalk while FSO channels can be severely affected by the atmospheric turbulence. These impairments together with the accumulation of background and amplifying noises over multiple relays significantly degrade the overall system performance. To deal with this problem, the use of the M-ary pulse position modulation (M-PPM) together with the OAF relaying technique is advocated as a powerful remedy to mitigate the effects of atmospheric turbulence. For the performance analysis, we use a realistic model of Gaussian pulse propagation to investigate major atmospheric effects, including signal turbulence and pulse broadening. We qualitatively discuss the impact of various system parameters, including the required average transmitted powers per information bit corresponding to specific values of bit error rate (BER), transmission distance, number of relays, and turbulence strength. Our numerical results are also thoroughly validated by Monte-Carlo (M-C) simulations.

  • Frequency Division Multiplexed Radio-on-Fiber Link Employing an Electro-Absorption Modulator Integrated Laser Diode for a Cube Satellite Earth Station

    Seiji FUKUSHIMA  Takayuki SHIMAKI  Kota YAMASHITA  Taishi FUNASAKO  Tomohiro HACHINO  

     
    PAPER

      Vol:
    E99-C No:2
      Page(s):
    212-218

    Recent small cube satellites use higher frequency bands such as Ku-band for higher throughput communications. This requires high-frequency link in an earth radio station as well. As one of the solutions, we propose usage of bidirectional radio-on-fiber link employing a wavelength multiplexing scheme. It was numerically shown that the response linearity of the electro-absorption modulator integrated laser (EML) is sufficient and that the spurious emissions are lower enough or can be reduced by the radio-frequency filters. From the frequency response and the single-sideband phase noise measurements, the EML was proved to be used in a radio-on-fiber system of the cube satellite earth station.

  • Re-Configurable Wavelength De-Multiplexer in Wavelength Division Multiplexed Radio-over-Fiber Systems for Frequency-Modulated Continuous-Wave Signal Delivery

    Toshiaki KURI  Atsushi KANNO  Tetsuya KAWANISHI  

     
    PAPER-MWP Sensing Technique

      Vol:
    E98-C No:8
      Page(s):
    849-856

    A re-configurable wavelength de-multiplexer for wave-length-division-multiplexed (WDM) radio-over-fiber (RoF) systems, which is specially designed for delivering frequency-modulated continuous-wave (FM-CW) signals, is newly developed. The principle and characteristics of the developed de-multiplexer are described in detail. Then the de-multiplexing performances of 4-channel WDM 32-GHz-band, 8-channel WDM 48-GHz-band, and 5-channel WDM 96-GHz-band FM-CW RoF signals are evaluated with the de-multiplexer.

  • An Optimized Algorithm for Dynamic Routing and Wavelength Assignment in WDM Networks with Sparse Wavelength Conversion

    Liangrui TANG  Sen FENG  Jianhong HAO  Bin LI  Xiongwen ZHAO  Xin WU  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E98-B No:2
      Page(s):
    296-302

    The dynamic routing and wavelength assignment (RWA) problem in wavelength division multiplexing (WDM) optical networks with sparse wavelength conversion has been a hot research topic in recent years. An optimized algorithm based on a multiple-layered interconnected graphic model (MIG) for the dynamic RWA is presented in this paper. The MIG is constructed to reflect the actual WDM network topology. Based on the MIG, the link cost is given by the conditions of available lightpath to calculate an initial solution set of optimal paths, and by combination with path length, the optimized solution using objective function is determined. This approach simultaneously solves the route selection and wavelength assignment problem. Simulation results demonstrate the proposed MIG-based algorithm is effective in reducing blocking probability and boosting wavelength resource utilization compared with other RWA methods.

  • Athermal Wavelength Filters toward Optical Interconnection to LSIs

    Yuki ATSUMI  Manabu ODA  Joonhyun KANG  Nobuhiko NISHIYAMA  Shigehisa ARAI  

     
    PAPER

      Vol:
    E95-C No:2
      Page(s):
    229-236

    Photonic integrated circuits (PICs) produced by large-scale integration (LSI) on Si platforms have been intensively researched. Since thermal diffusion from the LSI logic layer is a serious obstacle to realizing a Si-based optical integrated circuit, we have proposed and realized athermal wavelength filters using Si slot waveguides embedded with benzocyclobutene (BCB). First, the athermal conditions were theoretically investigated by controlling the waveguide and gap width of the slot waveguides. In order to introduce the calculated waveguide structures to wavelength filters, the propagation losses and bending losses of the Si slot waveguides were evaluated. The propagation losses were measured to be 5.6 and 5.3 dB/cm for slot waveguide widths of 500 and 700 nm, respectively. Finally, athermal wavelength filters, a ring resonator, and a Mach-Zhender interferometer (MZI) with a slot waveguide width of 700 nm were designed and fabricated. Further, a temperature coefficient of -0.9 pm/K for the operating wavelength was achieved with the athermal MZI.

  • A Simple and Speedy Routing with Reduced Resource Information in Large-Capacity Optical WDM Networks

    Yusuke HIROTA  Hideki TODE  Koso MURAKAMI  

     
    PAPER

      Vol:
    E94-B No:4
      Page(s):
    884-893

    This paper discusses a simple and speedy routing method in large-capacity optical Wavelength Division Multiplexing (WDM) networks. The large-capacity WDM network is necessary to accommodate increasing traffic load in future. In this large-capacity WDM network, each link has many fibers and a huge amount of optical data can be transmitted through these fibers simultaneously. Optical path is configured for transmitting optical data by wavelength reservation including routing and wavelength assignment (RWA). Since traditional RWA methods have to treat much information about available wavelengths in each fiber, it is difficult to resolve RWA problem on time. In other words, the electrical processing becomes the bottleneck in the large-capacity WDM network. Therefore, a simple and speedy RWA method is necessary for the large-capacity WDM network. In this paper, we propose the simple and effective RWA method which considers reduced information as Network Map. The objective is to improve the network performance by using multiple fibers effectively. The complex processing is not suitable for data transmission because the switching operation must be done in very short time for one request. In addition to this, it is not practical to collect detailed network information frequently. The proposed wavelength assignment method assigns wavelength more uniformly than traditional method, and therefore, the proposed routing method can select routes without considering detailed information about each wavelength state. The proposed routing method needs only local information and reduced network information. This paper shows that the proposed routing method can get suitable solution for large-capacity optical WDM networks through computer simulations. The proposed RWA method drastically improves the loss probability against other simple RWA methods. This paper also describes two types of optical switches with tunable or fixed wavelength conversions. The wavelength converters with relatively low technology becomes effective with the proposed RWA method in the large-capacity WDM network. This paper reveals that complex routing methods are not necessary for large-capacity optical WDM networks.

  • Multicast Routing and Wavelength Assignment with Shared Protection in Multi-Fiber WDM Mesh Networks: Optimal and Heuristic Solutions

    Kampol WORADIT  Matthieu GUYOT  Pisit VANICHCHANUNT  Poompat SAENGUDOMLERT  Lunchakorn WUTTISITTIKULKIJ  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E92-B No:11
      Page(s):
    3401-3409

    While the problem of multicast routing and wavelength assignment (MC-RWA) in optical wavelength division multiplexing (WDM) networks has been investigated, relatively few researchers have considered network survivability for multicasting. This paper provides an optimization framework to solve the MC-RWA problem in a multi-fiber WDM network that can recover from a single-link failure with shared protection. Using the light-tree (LT) concept to support multicast sessions, we consider two protection strategies that try to reduce service disruptions after a link failure. The first strategy, called light-tree reconfiguration (LTR) protection, computes a new multicast LT for each session affected by the failure. The second strategy, called optical branch reconfiguration (OBR) protection, tries to restore a logical connection between two adjacent multicast members disconnected by the failure. To solve the MC-RWA problem optimally, we propose an integer linear programming (ILP) formulation that minimizes the total number of fibers required for both working and backup traffic. The ILP formulation takes into account joint routing of working and backup traffic, the wavelength continuity constraint, and the limited splitting degree of multicast-capable optical cross-connects (MC-OXCs). After showing some numerical results for optimal solutions, we propose heuristic algorithms that reduce the computational complexity and make the problem solvable for large networks. Numerical results suggest that the proposed heuristic yields efficient solutions compared to optimal solutions obtained from exact optimization.

  • Self-Routing Nonblocking WDM Switches Based on Arrayed Waveguide Grating

    Yusuke FUKUSHIMA  Xiaohong JIANG  Achille PATTAVINA  Susumu HORIGUCHI  

     
    PAPER-Switching for Communications

      Vol:
    E92-B No:4
      Page(s):
    1173-1182

    Arrayed waveguide grating (AWG) is a promising technology for constructing high-speed large-capacity WDM switches, because it can switch fast, is scalable to large size and consumes little power. To take the full advantage of high-speed AWG, the routing control of a massive AWG-based switch should be as simple as possible. In this paper, we focus on the self-routing design of AWG-based switches with O(1) constant routing complexity and propose a novel construction of self-routing AWG switches that can guarantee the attractive nonblocking property for both the wavelength-to-wavelength and wavelength-to-fiber request models. We also fully analyze the proposed design in terms of its blocking property, hardware cost and crosstalk performance and compare it against traditional designs. It is expected that the proposed construction will be useful for the design and all-optical implementation of future ultra high-speed optical packet/burst switches.

  • Bidirectional Gigabit Millimeter-Wave Wavelength Division Multiplexed-Radio over Fiber Link Using a Reflective Semiconductor Optical Amplifier

    Dae-Won LEE  Yong-Yuk WON  Sang-Kook HAN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:7
      Page(s):
    2418-2421

    We propose a new bidirectional gigabit mm-wave wavelength division multiplexed-radio over fiber link which shares the same wavelength. As the downlink, the central station transmits a 30 GHz single sideband wireless signal which is modulated 1.25 Gbps and also transmits a remote 32 GHz local oscillator for down-conversion of a uplink wireless signal by using a mach-zehnder modulator and a fiber bragg grating. As the uplink, the base station transmits a down-converted 1.25 Gbps wireless signal by using a reflective semiconductor optical amplifier. We achieve a BER < 10-9 in the downlink at -14.05 dBm and uplink at -12.5 dBm after 20 km transmission.

  • WDM-PON Based on Wavelength Locked Fabry-Pérot Laser Diodes and Multi-Branch Optical Distribution Network

    Tae-Won OH  Hak-Kyu LEE  Chang-Hee LEE  

     
    LETTER-Fiber-Optic Transmission for Communications

      Vol:
    E91-B No:2
      Page(s):
    579-580

    We demonstrate a wavelength division multiplexing passive optical network (WDM-PON) based on wavelength-locked Fabry-Perot laser diodes and thin-film filters. Twelve Fast Ethernet signals are bi-directionally transmitted over the multi-branch optical distribution network (ODN). The ODN has distributed branch nodes and bus networks.

  • Gbit-Class Transmission Using SOA Data Rewriter for WDM-PON Open Access

    Satoshi NARIKAWA  Hiroaki SANJOH  Naoya SAKURAI  Kiyomi KUMOZAKI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E91-B No:2
      Page(s):
    399-408

    We describe the transmission characteristics of a wavelength independent wavelength division multiplexing passive optical network (WDM-PON) based on a wavelength channel data rewriter (WCDR). The WCDR is composed of a linear amplifier (LA) and a saturated semiconductor optical amplifier (SOA), and by using the WCDR in optical network units (ONUs), we can erase the downstream signal and modulate the same wavelength channel with the upstream signal. In this paper, we analyze the data rewriting characteristic, the frequency chirp characteristic and the bit error rate (BER) degradation occasioned by the use of saturated SOAs. Furthermore, we report high-speed transmission with power penalty of less than 1 dB at bit rates of 1.25 Gbit/s, 2.5 Gbit/s and 10 Gbit/s for downstream signals and 1.25 Gbit/s for upstream signals after transmission through 40 km of single-mode fiber.

  • Optical Beat Noise Reduction Using FM to AM Conversion of Injection-Locked FP-Laser Diode in Reflective SOA Based WDM/SCM-Passive Optical Networks

    Yong-Yuk WON  Hyuk-Choon KWON  Sang-Kook HAN  

     
    LETTER-Fiber-Optic Transmission for Communications

      Vol:
    E90-B No:10
      Page(s):
    2953-2956

    A new scheme for reducing optical beat interference noise in a reflective semiconductor optical amplifier based wavelength division multiplexed/subcarrier multiplexing -- passive optical network is proposed. This method uses an Fabry Perot laser locked by modulated lights from optical network units in a central office. As an experimental verification, it is reported that carrier to noise ratio is enhanced by 10 dB and power penalty is improved by 16 dB.

1-20hit(74hit)