The search functionality is under construction.
The search functionality is under construction.

IEICE TRANSACTIONS on Communications

  • Impact Factor

    0.73

  • Eigenfactor

    0.002

  • article influence

    0.1

  • Cite Score

    1.6

Advance publication (published online immediately after acceptance)

Volume E107-B No.8  (Publication Date:2024/08/01)

    Regular Section
  • Polling Schedule Algorithms for Data Aggregation with Sensor Phase Control in In-Vehicle UWB Networks Open Access

    Hajime MIGITA  Yuki NAKAGOSHI  Patrick FINNERTY  Chikara OHTA  Makoto OKUHARA  

     
    PAPER-Network

      Page(s):
    529-540

    To enhance fuel efficiency and lower manufacturing and maintenance costs, in-vehicle wireless networks can facilitate the weight reduction of vehicle wire harnesses. In this paper, we utilize the Impulse Radio-Ultra Wideband (IR-UWB) of IEEE 802.15.4a/z for in-vehicle wireless networks because of its excellent signal penetration and robustness in multipath environments. Since clear channel assessment is optional in this standard, we employ polling control as a multiple access control to prevent interference within the system. Therein, the preamble overhead is large in IR-UWB of IEEE 802.15.4a/z. Hence, aggregating as much sensor data as possible within each frame is more efficient. In this paper, we assume that reading out data from sensors and sending data to actuators is periodical and that their respective phases can be adjusted. Therefore, this paper proposes an integer linear programming-based scheduling algorithm that minimizes the number of transmitted frames by adjusting the read and write phases. Furthermore, we provide a heuristic algorithm that computes a sub-optimal but acceptable solution in a shorter time. Experimental validation shows that the data aggregation of the proposed algorithms is robust against interference.

  • Waveguide Slot Array with Code-Division Multiplexing Function for Single RF Chain Digital Beamforming Open Access

    Narihiro NAKAMOTO  Kazunari KIHIRA  Toru FUKASAWA  Yoshio INASAWA  Naoki SHINOHARA  

     
    PAPER-Antennas and Propagation

      Page(s):
    541-551

    This study presents a novel waveguide slot array with a code-division multiplexing function for single RF chain digital beamforming. The proposed antenna is comprised of a rectangular metallic waveguide’s bottom part and a multilayer printed circuit board (PCB) with the rectangular waveguide’s top wall and slot apertures. Multiple pairs of two symmetric longitudinal slots are etched on the metal surface of the PCB, and a PIN diode is mounted across each slot. The received signals of each slot pair are multiplexed in a code-division multiplexing fashion by switching the diodes’ bias according to the Walsh Hadamard code, and the original signals are then recovered through a despreading process in the digital domain for digital beamforming. A prototype antenna with eight slot pairs has been fabricated and tested for proof of concept. The measured results show the feasibility of the proposed antenna.

  • Differential Active Self-Interference Cancellation for Asynchronous In-Band Full-Duplex GFSK Open Access

    Shinsuke IBI  Takumi TAKAHASHI  Hisato IWAI  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    552-563

    This paper proposes a novel differential active self-interference canceller (DASIC) algorithm for asynchronous in-band full-duplex (IBFD) Gaussian filtered frequency shift keying (GFSK), which is designed for wireless Internet of Things (IoT). In IBFD communications, where two terminals simultaneously transmit and receive signals in the same frequency band, there is an extremely strong self-interference (SI). The SI can be mitigated by an active SI canceller (ASIC), which subtracts an interference replica based on channel state information (CSI) from the received signal. The challenging problem is the realization of asynchronous IBFD for wireless IoT in indoor environments. In the asynchronous mode, pilot contamination is induced by the non-orthogonality between asynchronous pilot sequences. In addition, the transceiver suffers from analog front-end (AFE) impairments, such as phase noise. Due to these impairments, the SI cannot be canceled entirely at the receiver, resulting in residual interference. To address the above issue, the DASIC incorporates the principle of the differential codec, which enables to suppress SI without the CSI estimation of SI owing to the differential structure. Also, on the premise of using an error correction technique, iterative detection and decoding (IDD) is applied to improve the detection capability while exchanging the extrinsic log-likelihood ratio (LLR) between the maximum a-posteriori probability (MAP) detector and the channel decoder. Finally, the validity of using the DASIC algorithm is evaluated by computer simulations in terms of the packet error rate (PER). The results clearly demonstrate the possibility of realizing asynchronous IBFD.

  • Sum Rate Maximization for Multiuser Full-Duplex Wireless Powered Communication Networks Open Access

    Keigo HIRASHIMA  Teruyuki MIYAJIMA  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    564-572

    In this paper, we consider an orthogonal frequency division multiple access (OFDMA)-based multiuser full-duplex wireless powered communication network (FD WPCN) system with beamforming (BF) at an energy transmitter (ET). The ET performs BF to efficiently transmit energy to multiple users while suppressing interference to an information receiver (IR). Multiple users operating in full-duplex mode harvest energy from the signals sent by the ET while simultaneously transmitting information to the IR using the harvested energy. We analytically demonstrate that the FD WPCN is superior to its half-duplex (HD) WPCN counterpart in the high-SNR regime. We propose a transmitter design method that maximizes the sum rate by determining the BF at the ET, power allocation at both the ET and users, and sub-band allocation. Simulation results show the effectiveness of the proposed method.