1-3hit |
Young-Hee KIM Jong-Ki NAM Sang-Hoon LEE Hong-June PARK Joo-Sun CHOI Choon-Sung PARK Seung-Han AHN Jin-Yong CHUNG
A two-phase boosted voltage (VPP) generator circuit was proposed for use in giga-bit DRAMs. It reduced the maximum gate oxide voltage of pass transistor and the lower limit of supply voltage to VPP and VTN respectively while those for the conventional charge pump circuit are VPP+VDD and 1.5 VTN respectively. Also the pumping current was increased in the new circuit.
Kyeong-Sik MIN Young-Hee KIM Daejeong KIM Dong Myeong KIM Jin-Hong AHN Jin-Yong CHUNG
A new CMOS positive charge pump (NCP-1) is proposed and compared with the conventional pump in this paper. The comparison indicates that this NCP-1 scheme delivers 1.6 times larger output current into the load with roughly 10% area penalty than the conventional pump. To alleviate the area overhead of NCP-1, another new NCP-2 is proposed, where its current drivability is slightly lower than NCP-1 by as small as 5% but it achieves much smaller layout penalty as small as 2-3% compared with the conventional pump. The effectiveness of NCP-1 is verified experimentally in this paper by using 0.35-µm n-well process technology. These NCP-1 and NCP-2 are useful to DRAMs and NOR-type flash memories with sub-1-V VDD, where their large-output-current nature is favorable.
Young-Hee KIM Jong-Doo JOO Jae-Kyung WEE Jin-Yong CHUNG Young-Soo SOHN Hong-June PARK
A fully on-chip open-drain CMOS output driver was designed for high bandwidth DRAMs, such that its output voltage swing was insensitive to the variations of temperature and supply voltage. An auto refresh signal was used to update the contents of the current control register, which determined the transistors to be turned-on among the six binary-weighted transistors of an output driver. Because the auto refresh signal is available in DRAM chips, the output driver of this work does not require any external signals to update the current control register. During the time interval while the update is in progress, a negative feedback loop is formed to maintain the low level output voltage (VOL) to be equal to the reference voltage (VOL.ref) which is generated by a low-voltage bandgap reference circuit. Test results showed the successful operation at the data rate up to 1 Gb/s. The worst-case variations of VOL.ref and VOL of the proposed output driver were measured to be 2.5% and 7.5% respectively within a temperature range of 20 to 90 and a supply voltage range of 2.25 V to 2.75 V, while the worst-case variation of VOL of the conventional output driver was measured to be 24% within the same ranges of temperature and supply voltage.