1-4hit |
Takao MORIMOTO Kenichiro YASHIKI Koji KUDO Tatsuya SASAKI
Various types of wavelength-selectable light sources (WSLs) and wavelength-tunable laser diodes (LDs) have been developed, and the one based on an array of distributed feedback (DFB) laser diodes (LDs) has the advantage of tuning that is both simple and stable tuning. It requires only the selection of a DFB-LD and a temperature control. We report on monolithically integrated WSLs with a DFB-LD array, multimode interference (MMI) coupler, semiconductor optical amplifier (SOA), and electro-absorption (EA) modulator. To make them compact, we introduced microarray structures and to ensure that they were easy to fabricate, we used selective area growth. For the WSL with an integrated EA modulator, we developed a center-temperature-shift method that optimizes the detuning wavelength between the lasing wavelength and the absorption edge wavelength of the EA-modulator. Using this method, we obtained a uniform extinction ratio and were able to demonstrate error-free 2.5-Gb/s transmission over a 600-km fiber span. A CW-WSL without an EA-modulator should provide enough output power to compensate the loss caused by the external modulators, but the high-power operation of a CW-WSL is sensitive to optical feedback from the front facet. We therefore used an angled facet in our WSLs and eliminated a mode hop problem. More than 20 mW of fiber-coupled power was obtained over 23 ITU-T channels on a 50-GHz grid.
Kenichiro YASHIKI Toshinori UEMURA Mitsuru KURIHARA Yasuyuki SUZUKI Masatoshi TOKUSHIMA Yasuhiko HAGIHARA Kazuhiko KURATA
Aiming to solve the input/output (I/O) bottleneck concerning next-generation interconnections, 5×5-millimeters-squared silicon-photonics-based chip-scale optical transmitters/receivers (TXs/RXs) — called “optical I/O cores” — were developed. In addition to having a compact footprint, by employing low-power-consumption integrated circuits (ICs), as well as providing multimode-fiber (MMF) transmission in the O band and a user-friendly interface, the developed optical I/O cores allow common ease of use with applications such as multi-chip modules (MCMs) and active optical cables (AOCs). The power consumption of their hybrid-integrated ICs is 5mW/Gbps. Their high-density user-friendly optical interface has a spot-size-converter (SSC) function and permits the physical contact against the outer waveguides. As a result, they provide large enough misalignment tolerance to allow use of passive alignment and visual alignment. In a performance test, they demonstrated 25-Gbps/ch error-free operation over 300-m MMF.
Naofumi SUZUKI Takayoshi ANAN Hiroshi HATAKEYAMA Kimiyoshi FUKATSU Kenichiro YASHIKI Keiichi TOKUTOME Takeshi AKAGAWA Masayoshi TSUJI
We have developed InGaAs-based VCSELs operating around 1.1 µm for high-speed optical interconnections. By applying GaAsP barrier layers, temperature characteristics were considerably improved compared to GaAs barrier layers. As a result, 25 Gbps 100 error-free operation was achieved. These devices also exhibited high reliability. No degradation was observed over 3,000 hours under operation temperature of 150 and current density of 19 kA/cm2. We also developed VCSELs with tunnel junctions for higher speed operation. High modulation bandwidth of 24 GHz and a relaxation oscillation frequency of 27 GHz were achieved. 40 Gbps error-free operation was also demonstrated.
Takahiro NAKAMURA Kenichiro YASHIKI Kenji MIZUTANI Takaaki NEDACHI Junichi FUJIKATA Masatoshi TOKUSHIMA Jun USHIDA Masataka NOGUCHI Daisuke OKAMOTO Yasuyuki SUZUKI Takanori SHIMIZU Koichi TAKEMURA Akio UKITA Yasuhiro IBUSUKI Mitsuru KURIHARA Keizo KINOSHITA Tsuyoshi HORIKAWA Hiroshi YAMAGUCHI Junichi TSUCHIDA Yasuhiko HAGIHARA Kazuhiko KURATA
Optical I/O core based on silicon photonics technology and optical/electrical assembly was developed as a fingertip-size optical module with high bandwidth density, low power consumption, and high temperature operation. The advantages of the optical I/O core, including hybrid integration of quantum dot laser diode and optical pin, allow us to achieve 300-m transmission at 25Gbps per channel when optical I/O core is mounted around field-programmable gate array without clock data recovery.