1-2hit |
Takahiro NAKAMURA Kenichiro YASHIKI Kenji MIZUTANI Takaaki NEDACHI Junichi FUJIKATA Masatoshi TOKUSHIMA Jun USHIDA Masataka NOGUCHI Daisuke OKAMOTO Yasuyuki SUZUKI Takanori SHIMIZU Koichi TAKEMURA Akio UKITA Yasuhiro IBUSUKI Mitsuru KURIHARA Keizo KINOSHITA Tsuyoshi HORIKAWA Hiroshi YAMAGUCHI Junichi TSUCHIDA Yasuhiko HAGIHARA Kazuhiko KURATA
Optical I/O core based on silicon photonics technology and optical/electrical assembly was developed as a fingertip-size optical module with high bandwidth density, low power consumption, and high temperature operation. The advantages of the optical I/O core, including hybrid integration of quantum dot laser diode and optical pin, allow us to achieve 300-m transmission at 25Gbps per channel when optical I/O core is mounted around field-programmable gate array without clock data recovery.
Takeshi B. NISHIMURA Naotaka IWATA Keiko YAMAGUCHI Masatoshi TOMITA Yasunori BITO Koichi TAKEMURA Yoichi MIYASAKA
This paper describes design approach and power performance of a single 1. 5 V operation two-stage power amplifier MMIC for 2. 4 GHz wireless local area network applications. The MMIC with 0. 760. 96 mm2 area includes SrTiO3 (STO) capacitors with a high capacitance density of 8. 0 fF/µm2 and double-doped AlGaAs/InGaAs/AlGaAs heterojunction FETs with a shallow threshold voltage of -0. 24 V. Utilizing a series STO capacitor and a shunt inductor as an output matching circuit, the total chip size was reduced by 40% as compared with an MMIC utilizing SiNx capacitors. Under single 1.5 V operation, the developed MMIC delivered an output power of 110 mW (20.4 dBm) and a power-added efficiency (PAE) of 36.7% with an associated gain of 20.0 dB at 2.4 GHz. Even operated at a drain bias voltage of 0.8 V, the MMIC exhibited a high PAE of 31.0%.