1-7hit |
Kazunori MIYOSHI Ichiro HATAKEYAMA Jun'ichi SASAKI Takahiro NAKAMURA
12-channel DC to 622-Mbit/s/ch optical transmitter and receiver have been developed for high-capacity and rather long (about 100 m) bit-parallel raw data transmission in intra- and inter-cabinet interconnection of large-scale switching, routing and computing system. Bit-parallel raw data transmission is done by using a bit-by-bit operational automatic decision threshold control receiver circuit with a DC-coupled configuration, the pin-PDs with their anodes and cathodes separated in a channel-by-channel manner, and a receiver preamplifier with a low-pass filter. The transmitter consists of a 12-channel LD sub-assembly unit and a LD driver LSI. The LD sub-assembly unit consists of a 12-channel array of high temperature characteristic 1.3-µm planar buried hetero-structure (PBH) LDs and 62.5/125 graded-index multi-mode fibers (GI62.5 MMFs). The 1.3-µm PBH LDs and the GI62.5 MMFs are optically coupled by passively visual alignment technology on the Si V-groove. The receiver consists of a 12-channel pin-PD sub-assembly unit and a receiver LSI. The pin-PD sub-assembly unit consist of a 12-channel array of pin-PDs and GI62.5 MMFs. They are optically coupled by using a flip-chip bonding on the Si V-groove. The transmitter and receiver each have eleven data channels and one clock channel. The size is as small as 3.6 cc for each modules, and the power consumptions are 1.7 W (transmitter) and 1.35 W (receiver). They transmitted a bit-parallel raw data through a 100-meter ribbon of GI62.5 MMFs in an ambient temperature range of 0-70C. They provide a synchronous PECL interface parallel link for with a 3.3-V single power supply.
Naofumi SUZUKI Kazuhiko SHIBA Takumi TSUKUDA Takahiro NAKAMURA
Low-crosstalk 1.3-µm Fabry-Perot laser diode (FP-LD) and photodiode (PD) arrays are developed. The arrays are fabricated on semi-insulating substrates and their anodes and cathodes are separated channel by channel to suppress inter-channel electrical crosstalk at high frequency. Crosstalk of less than -30 dB is achieved between neighboring LDs at 3.125 GHz. This is low enough for BER characteristics observed under asynchronous operation of a 4-channel LD array to be no worse than those under single-channel operation. Excellent uniformity of both LD and PD characteristics, high-temperature operation of the LD array, and low-voltage operation of the PD array are also attained. These arrays are suitable for low-cost high-bit-rate parallel optical communications.
Takahiro NAKAMURA Kenichiro YASHIKI Kenji MIZUTANI Takaaki NEDACHI Junichi FUJIKATA Masatoshi TOKUSHIMA Jun USHIDA Masataka NOGUCHI Daisuke OKAMOTO Yasuyuki SUZUKI Takanori SHIMIZU Koichi TAKEMURA Akio UKITA Yasuhiro IBUSUKI Mitsuru KURIHARA Keizo KINOSHITA Tsuyoshi HORIKAWA Hiroshi YAMAGUCHI Junichi TSUCHIDA Yasuhiko HAGIHARA Kazuhiko KURATA
Optical I/O core based on silicon photonics technology and optical/electrical assembly was developed as a fingertip-size optical module with high bandwidth density, low power consumption, and high temperature operation. The advantages of the optical I/O core, including hybrid integration of quantum dot laser diode and optical pin, allow us to achieve 300-m transmission at 25Gbps per channel when optical I/O core is mounted around field-programmable gate array without clock data recovery.
Yutaka URINO Yoshiji NOGUCHI Nobuaki HATORI Masashige ISHIZAKA Tatsuya USUKI Junichi FUJIKATA Koji YAMADA Tsuyoshi HORIKAWA Takahiro NAKAMURA Yasuhiko ARAKAWA
One of the most serious challenges facing the exponential performance growth in the information industry is a bandwidth bottleneck in inter-chip interconnects. We therefore propose a photonics-electronics convergence system with a silicon optical interposer. We examined integration between photonics and electronics and integration between light sources and silicon substrates, and we fabricated a conceptual model of the proposed system based on the results of those examinations. We also investigated the configurations and characteristics of optical components for the silicon optical interposer: silicon optical waveguides, silicon optical splitters, silicon optical modulators, germanium photodetectors, arrayed laser diodes, and spot-size converters. We then demonstrated the feasibility of the system by fabricating a high-density optical interposer by using silicon photonics integrated with these optical components on a single silicon substrate. As a result, we achieved error-free data transmission at 12.5 Gbps and a high bandwidth density of 6.6 Tbps/cm2 with the optical interposer. We think that this technology will solve the bandwidth bottleneck problem.
Yoshiharu MUROYA Kenji SATO Tetsuro OKUDA Takahiro NAKAMURA Hirohito YAMADA Toshitaka TORIKAI
Well-defined wavelength distributed feedback laser diodes (DFB-LDs) are required in WDM network systems. Since the EDFA gain bands have been expanded, even more wavelengths are needed for large-capacity dense-WDM transmission systems. A precisely pitch-controlled Bragg grating fabricated by electron beam (EB) lithography is very attractive for realizing these DFB-LDs. This paper describes this precise pitch- and phase-controlled grating delineated by a novel method called weighted-dose allocation variable-pitch EB-lithography (WAVE). In this method, an EB-dose profile for the grating is precisely controlled by a combination of the allocation and weighting of multiple exposures. This enables us to fabricate a precise fixed-pitch grating as well as a flexible grating with a continuously chirped structure. The stitching error at the exposure field boundary, the grating pitch, and the phase shift were evaluated by using a moire pattern generated by superimposing the microscope raster scan and the grating on a wafer. We also estimated amounts of the stitching errors from fabricated and calculated lasing characteristics, and clarified that the affect of the errors on the single-mode stability of LDs is negligible. Precise wavelength controlled λ/4 phase shifted DFB-LDs were successfully demonstrated as a result of both the WAVE method and the highly uniform MOVPE crystal growth.
Takashi TAKEMOTO Yasunobu MATSUOKA Hiroki YAMASHITA Takahiro NAKAMURA Yong LEE Hideo ARIMOTO Tatemi IDO
A 50-Gb/s optical transmitter, consisting of a 25-Gb/s-class lens-integrated DFB-LD (with -3-dB bandwidth of 20GHz) and a LD-driver chip based on 0.18-µm SiGe BiCMOS technology for inter and intra-rack transmissions, was developed and tested. The DFB-LD and LD driver chip are flip-chip mounted on an alumina ceramic package. To suppress inter-symbol interference due to a shortage of the DFB-LD bandwidth and signal reflection between the DFB-LD and the package, the LD driver includes a two-tap pre-emphasis circuit and a high-speed termination circuit. Operating at a data rate of 50Gb/s, the optical transmitter enhances LD bandwidth and demonstrated an eye opening with jitter margin of 0.23UI. Power efficiency of the optical transmitter at a data rate of 50Gb/s is 16.2mW/Gb/s.
Takahiro NAKAMURA Tomomitsu KITAMURA Nobuhiro SHIRAMIZU Toru MASUDA
A wide-tuning-range LC-tuned voltage-controlled oscillator (LC-VCO) – featuring small VCO-gain (KVCO) variation – has been developed. For small KVCO variation, a serial LC-resonator that consists of an inductor, a fine-tuning varactor, and a capacitor bank was added to a conventional parallel LC-resonator that uses a capacitor bank scheme. The resonator was applied to a 3.9-GHz VCO for multi-band W-CDMA RFIC fabricated using 0.25-µm Si-BiCMOS technology. The VCO exhibited KVCO variation of only 21%, which is one third that of a conventional VCO, with a 34% tuning range. The VCO also exhibited a low phase noise of -121 dBc/Hz at 1-MHz offset frequency and a low current consumption of 6.0 mA.