1-3hit |
Hirotaka TAMURA Masaya KIBUNE Hisakatsu YAMAGUCHI Kouichi KANDA Kohtaroh GOTOH Hideki ISHIDA Junji OGAWA
The paper provides an overview of the circuit techniques for CMOS high-speed I/Os, focusing on the design issues in sub-100 nm standard CMOS. First, we describe the evolution of CMOS high-speed I/O since it appeared in mid 90's. In our view, the surge in the I/O bandwidth we experienced from the mid 90's to the present was driven by the continuous improvement of the CMOS IC performance. As a result, CMOS high-speed I/O has covered the data rate ranging from 2.5 Gb/s to 10 Gb/s, and now is heading for 40 Gb/s and beyond. To meet the speed requirements, an optimum choice of the transceiver architecture and its building blocks are crucial. We pick the most critical building blocks such as the decision circuit and the multiplexors and give detailed explanation of their designs. We describe the low-voltage operation of the high-speed I/O in view of reducing the power consumption. An example of a 90-nm CMOS 2.5 Gb/s transceiver operating off a 0.8 V power supply will be described. Operability at 0.8 V ensures that the circuits will not become obsolescent, even below the 60 nm process node.
Kyeong-Sik MIN Kouichi KANDA Hiroshi KAWAGUCHI Kenichi INAGAKI Fayez Robert SALIBA Hoon-Dae CHOI Hyun-Young CHOI Daejeong KIM Dong Myong KIM Takayasu SAKURAI
A new Row-by-Row Dynamic Source-Line Voltage Control (RRDSV) scheme is proposed to suppress leakage current by two orders of magnitude in the SRAM's for sub-70 nm process technology with sub-1-V VDD. This two-order leakage reduction is caused from the cooperation of reverse body-to-source biasing and Drain Induced Barrier Lowering (DIBL) effects. In addition, metal shields are proposed to be inserted between the cell nodes and the bit lines not to allow the cell nodes to be flipped by the external bit-line coupling noise in this paper. A test chip has been fabricated to verify the effectiveness of the RRDSV scheme with the metal shields by using 0.18-µm CMOS process. The retention voltages of SRAM's with the metal shields are measured to be improved by as much as 40-60 mV without losing the stored data compared to the SRAM's without the shields.
Takayuki SHIBASAKI Hirotaka TAMURA Kouichi KANDA Hisakatsu YAMAGUCHI Junji OGAWA Tadahiro KURODA
This paper describes an 18-GHz coupled VCO array for low jitter and low phase deviation clock distribution. To reduce the skew, jitter and power consumption associated with clock distribution, the clock is generated by a one-dimensional VCO array in which the oscillating nodes of adjacent VCOs are directly connected with wires. The effects of the wire length and number of unit VCOs in the array are discussed. Both 4-unit and a 2-unit VCO arrays for delivering a clock signal to a 16:1 multiplexor were designed and fabricated in a 90-nm CMOS process. The frequency range of the 4-unit VCO array was 16 GHz to 18.5 GHz while each unit VCO consumed 2 mA.