The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Ming WANG(38hit)

21-38hit(38hit)

  • Degrees of Freedom of MIMO Multiway Relay Channels Using Distributed Interference Neutralization and Retransmission

    Bowei ZHANG  Wenjiang FENG  Qian XIAO  Luran LV  Zhiming WANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2016/08/09
      Vol:
    E100-B No:2
      Page(s):
    269-279

    In this paper, we study the degrees of freedom (DoF) of a multiple-input multiple-output (MIMO) multiway relay channel (mRC) with two relays, two clusters and K (K≥3) users per cluster. We consider a clustered full data exchange model, i.e., each user in a cluster sends a multicast (common) message to all other users in the same cluster and desires to acquire all messages from them. The DoF results of the mRC with the single relay have been reported. However, the DoF achievability of the mRC with multiple relays is still an open problem. Furthermore, we consider a more practical scenario where no channel state information at the transmitter (CSIT) is available to each user. We first give a DoF cut-set upper bound of the considered mRC. Then, we propose a distributed interference neutralization and retransmission scheme (DINR) to approach the DoF cut-set upper bound. In the absence of user cooperation, this method focuses on the beamforming matrix design at each relay. By investigating channel state information (CSI) acquisition, we show that the DINR scheme can be performed by distributed processing. Theoretical analyses and numerical simulations show that the DoF cut-set upper bound can be attained by the DINR scheme. It is shown that the DINR scheme can provide significant DoF gain over the conventional time division multiple access (TDMA) scheme. In addition, we show that the DINR scheme is superior to the existing single relay schemes for the considered mRC.

  • A Power Adaptation Method for Finite Length Block Fading Channel with Multiple Antennas

    Chen JI  Jiang WU  Dongming WANG  Xiaohu YOU  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E96-B No:12
      Page(s):
    3041-3049

    We analyze a power adaptation method to maximize the achievable rate under the finite block length regime, for MIMO block fading channel with channel state information available at both the transmitter and receiver side. We find a convex approximation to the lower bound of the achievable rate, and it leads to a simple power and rate adaptation method. We show that the method achieves near optimal channel rate under the finite block length regime. Compared to the classical waterfilling method, the proposed method can further improve achievable rate especially for short block lengths.

  • An Accurate Scheme for Channel Parameter Estimation in Mobile Propagations

    Jingyu HUA  Limin MENG  Gang LI  Dongming WANG  Xiaohu YOU  

     
    LETTER

      Vol:
    E92-C No:1
      Page(s):
    116-120

    In this letter, we first investigate the bias of Doppler shift estimator based on autocorrelation function (ACF). Then we derive a signal-to-noise ratio (SNR) independent condition for Doppler shift estimation and achieve this condition by a adaptive process. Moreover, we present theoretical analysis about the convergency of our adaptive Doppler shift estimator, and derive a close-form expression for its mean square error (MSE). We verify the proposed estimator by computer simulation, the results of which are in agreement with the analysis, i.e., the proposed method achieves a good SNR-independent performance in a wide range of velocities and SNRs.

  • Low Complexity Cooperative Transmission Design and Optimization for Physical Layer Security of AF Relay Networks

    Chao WANG  Hui-Ming WANG  Weile ZHANG  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E97-B No:6
      Page(s):
    1113-1120

    This paper studies the design of cooperative beamforming (CB) and cooperative jamming (CJ) for the physical layer security of an amplify-and-forward (AF) relay network in the presence of multiple multi-antenna eavesdroppers. The secrecy rate maximization (SRM) problem of such a network is to maximize the difference of two concave functions, a problem which is non-convex and has no efficient solution. Based on the inner convex approximation (ICA) and semidefinite relaxation (SDR) techniques, we propose two novel low-complexity schemes to design CB and CJ for SRM in the AF network. In the first strategy, relay nodes adopt the CB only to secure transmission. Based on ICA, this design guarantees convergence to a Karush-Kuhn-Tucker (KKT) solution of the SDR of the original problem. In the second strategy, the optimal joint CB and CJ design is studied and the proposed joint design can guarantee convergence to a KKT solution of the original problem. Moreover, in the second strategy, we prove that SDR always has a rank-1 solution for the SRM problem. Simulation results show the superiority of the proposed schemes.

  • Capacity Maximization for Short-Range Millimeter-Wave Line-of-Sight TIMO Channels

    Haiming WANG  Rui XU  Mingkai TANG  Wei HONG  

     
    PAPER-Information Theory

      Vol:
    E98-A No:5
      Page(s):
    1085-1094

    The capacity maximization of line-of-sight (LoS) two-input and multiple-output (TIMO) channels in indoor environments is investigated in this paper. The 3×2 TIMO channel is mainly studied. First, the capacity fluctuation number (CFN) which reflects the variation of channel capacity is proposed. Then, the expression of the average capacity against the CFN is derived. The CFN is used as a criterion for optimization of the capacity by changing inter-element spacings of transmit and receive antenna arrays. Next, the capacity sensitivity of the 3×2 TIMO channel to the orientation and the frequency variation is studied and compared with those of 2×2 and 4×2 TIMO channels. A small capacity sensitivity of the 3×2 TIMO channel is achieved and verified by both simulation and measurement results. Furthermore, the CFN can also be used as a criterion for optimization of average capacity and the proposed optimization method is validated through numerical results.

  • Recent Progresses of Si-Based Photonics in Chinese Main Land

    Jinzhong YU  Qiming WANG  Buwen CHENG  Saowu CHEN  Yuhua ZUO  

     
    INVITED PAPER

      Vol:
    E91-C No:2
      Page(s):
    150-155

    Si-based photonic materials and devices, including SiGe/Si quantum structures, SOI and InGaAs bonded on Si, PL of Si nanocrystals, SOI photonic crystal filter, Si based RCE (Resonant Cavity Enhanced) photodiodes, SOI TO (thermai-optical) switch matrix were investigated in Institute of Semiconductors, Chinese Academy of Sciences. The main results in recent years are presented in the paper. The mechanism of PL from Si NCs embedded in SiO2 matrix was studied, a greater contribution of the interface state recombination (PL peak in 850~900 nm) is associated with larger Si NCs and higher interface state density. Ge dots with density of order of 1011 cm-2 were obtained by UHV/CVD growth and 193 nm excimer laser annealing. SOI photonic crystal filter with resonant wavelength of 1598 nm and Q factor of 1140 was designed and made. Si based hybrid InGaAs RCE PD with η of 34.4% and FWHM of 27 nm were achieved by MOCVD growth and bonding technology between InGaAs epitaxial and Si wafers. A 1616 SOI optical switch matrix were designed and made. A new current driving circuit was used to improve the response speed of a 44 SOI rearrangeable nonblocking TO switch matrix, rising and falling time is 970 and 750 ns, respectively.

  • Collector Doping Design for Improving DC and RF Performance in InGaP/GaAs HBTs before Onset of Kirk Effect

    Che-ming WANG  Kuang-Po HSUEH  Yue-ming HSIN  

     
    LETTER-Semiconductor Materials and Devices

      Vol:
    E88-C No:8
      Page(s):
    1790-1792

    A thin high-doping layer was inserted in the uniform doped collector to extend the operational current before current gain and cut-off frequency roll-off. Two times higher collector current before onset of Kirk effect was obtained and the resulted John figure of merit was improved from 846 to 1008 V-GHz.

  • Computing the Ate Pairing on Elliptic Curves with Embedding Degree k=9

    Xibin LIN  Chang-An ZHAO  Fangguo ZHANG  Yanming WANG  

     
    PAPER

      Vol:
    E91-A No:9
      Page(s):
    2387-2393

    For AES 128 security level there are several natural choices for pairing-friendly elliptic curves. In particular, as we will explain, one might choose curves with k=9 or curves with k=12. The case k=9 has not been studied in the literature, and so it is not clear how efficiently pairings can be computed in that case. In this paper, we present efficient methods for the k=9 case, including generation of elliptic curves with the shorter Miller loop, the denominator elimination and speed up of the final exponentiation. Then we compare the performance of these choices. From the analysis, we conclude that for pairing-based cryptography at the AES 128 security level, the Barreto-Naehrig curves are the most efficient choice, and the performance of the case k=9 is comparable to the Barreto-Naehrig curves.

  • Exploring IA Feasibility in MIMO Interference Networks: Equalized and Non-Equalized Antennas Approach

    Weihua LIU  Zhenxiang GAO  Ying WANG  Zhongfang WANG  Yongming WANG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/03/20
      Vol:
    E101-B No:9
      Page(s):
    2047-2057

    For general multiple-input multiple-output (MIMO) interference networks, determining the feasibility conditions of interference alignment (IA) to achieve the maximum degree of freedom (DoF), is tantamount to accessing the maximum spatial resource of MIMO systems. In this paper, from the view of antenna configuration, we first explore the IA feasibility in the K-user MIMO interference channel (IC), G-cell MIMO interference broadcast channel (IBC) and interference multiple access channel (IMAC). We first give the concept of the equalized antenna, and all antenna configurations are divided into two categories, equalized antennas and non-equalized ones. The feasibility conditions of IA system with equalized antennas are derived, and the feasible and infeasible regions are provided. Furthermore, we study the correlations among IC, IBC and IMAC. Interestingly, the G-cell MIMO IBC and IMAC are two special ICs, and a systemic work on IA feasibility for these three interference channels is provided.

  • Eigenmode Analysis of Whispering Gallery Modes of Pillbox-Type Optical Resonators Utilizing the FE-BPM Formulation

    Anis AHMED  Ryuichi KOYA  Osami WADA  Ming WANG  Ryuji KOGA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E78-C No:11
      Page(s):
    1638-1645

    To evaluate the radial eigenmode field distributions and the resonance wavelengths of axially symmetric pillbox resonator, a numerical method is described which is based on the FE-BPM expression in cylindrical coordinates. Under the weakly guiding approximation, we solve Fresnel equation and can get a fairly accurate result. By using effective index method, 3-D pillbox guiding structure is reduced to 2-D one which is then used for the analysis. One advantage of this method is that it is applicable for the axially symmetric optical waveguides with arbitrary index distribution. The validity of this method is checked by comparing the results of this method with those of the analytical ones. This method is applied for the evaluation of the coupling properties of a coupled structure consisting of a pillbox resonator and a curved waveguide placed outside the pillbox. This coupled structure has a good prospect to be used as optical wavelength filter. By varying the separation distance between the pillbox and the outer curved waveguide, the power transfer due to coupling is determined near the resonance wavelength 0.9 µm.

  • A Direct Localization Method of Multiple Distributed Sources Based on the Idea of Multiple Signal Classification

    Yanqing REN  Zhiyu LU  Daming WANG  Jian LIU  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/11/16
      Vol:
    E101-B No:5
      Page(s):
    1246-1256

    The Localization of distributed sources has attracted significant interest recently. There mainly are two types of localization methods which are able to estimate distributed source positions: two-step methods and direct localization methods. Unfortunately, both fail to exploit the location information and so suffer a loss in localization accuracy. By utilizing the information not used in the above, a direct localization method of multiple distributed sources is proposed in this paper that offers improved location accuracy. We construct a direct localization model of multiple distributed sources and develop a direct localization estimator with the theory of multiple signal classification. The distributed source positions are estimated via a three-dimensional grid search. We also provide Cramer-Rao Bound, computational complexity analysis and Monte Carlo simulations. The simulations demonstrate that the proposed method outperforms the localization methods above in terms of accuracy and resolution.

  • Data Hiding Approach for Point-Sampled Geometry

    Chung-Ming WANG  Peng-Cheng WANG  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E88-B No:1
      Page(s):
    190-194

    We present a novel scheme for digital steganography of point-sampled geometry in the spatial domain. Our algorithm is inspired by the concepts proposed by Cayre and Macq for 3D polygonal models. It employs a principal component analysis (PCA), resulting in a blind approach. We validate our scheme with various model complexities in terms of capacity, complexity, visibility, and security. This scheme is robust against translation, rotation, and scaling operations. It is fast and can achieve high data capacity with insignificant visual distortion in the stego models.

  • A Novel Algorithm for Sampling Uniformly in the Directional Space of a Cone

    Chung-Ming WANG  Chung-Hsien CHANG  Nen-Chin HWANG  Yuan-Yu TSAI  

     
    PAPER-Digital Signal Processing

      Vol:
    E89-A No:9
      Page(s):
    2351-2355

    We present a novel, simple, efficient algorithm to generate random samples uniformly on the directional space of a cone. This algorithm has three advantages over the conventional non-uniform approach. First, to the best of our knowledge, this algorithm is original for uniformly sampling smaller areas of cones. Second, it is faster. Third, it always generates valid samples, which is not possible for the conventional approach.

  • Progressive Spectral Rendering Using Wavelet Decomposition

    Jin-Ren CHERN  Chung-Ming WANG  

     
    LETTER-Computer Graphics

      Vol:
    E88-D No:2
      Page(s):
    341-345

    We propose a novel approach based on wavelet decomposition for progressive full spectral rendering. In the fourth progressive stage, our method renders an image that is 95% similar to the final non-progressive approach but requires less than 70% of the execution time. The quality of the rendered image is visually plausible that is indistinguishable from that of the non-progressive method. Our approach is graceful, efficient, progressive, and flexible for full spectral rendering.

  • Real-Time Scheduling of Data Flows with Deadlines for Industrial Wireless Sensor Networks

    Benhong ZHANG  Yiming WANG  Jianjun ZHANG  Juan XU  

     
    PAPER-Network

      Pubricized:
    2019/05/27
      Vol:
    E102-B No:12
      Page(s):
    2218-2225

    The flexibility of wireless communication makes it more and more widely used in industrial scenarios. To satisfy the strict real-time requirements of industry, various wireless methods especially based on the time division multiple access protocol have been introduced. In this work, we first conduct a mathematical analysis of the network model and the problem of minimum packet loss. Then, an optimal Real-time Scheduling algorithm based on Backtracking method (RSBT) for industrial wireless sensor networks is proposed; this yields a scheduling scheme that can achieve the lowest network packet loss rate. We also propose a suboptimal Real-time Scheduling algorithm based on Urgency and Concurrency (RSUC). Simulation results show that the proposed algorithms effectively reduce the rate of the network packet loss and the average response time of data flows. The real-time performance of the RSUC algorithm is close to optimal, which confirms the computation efficiency of the algorithm.

  • IGDM: An Information Geometric Difference Mapping Method for Signal Detection in Non-Gaussian Alpha-Stable Distributed Noise

    Jiansheng BAI  Jinjie YAO  Yating HOU  Zhiliang YANG  Liming WANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2023/08/25
      Vol:
    E106-B No:12
      Page(s):
    1392-1401

    Modulated signal detection has been rapidly advancing in various wireless communication systems as it's a core technology of spectrum sensing. To address the non-Gaussian statistical of noise in radio channels, especially its pulse characteristics in the time/frequency domain, this paper proposes a method based on Information Geometric Difference Mapping (IGDM) to solve the signal detection problem under Alpha-stable distribution (α-stable) noise and improve performance under low Generalized Signal-to-Noise Ratio (GSNR). Scale Mixtures of Gaussians is used to approximate the probability density function (PDF) of signals and model the statistical moments of observed data. Drawing on the principles of information geometry, we map the PDF of different types of data into manifold space. Through the application of statistical moment models, the signal is projected as coordinate points within the manifold structure. We then design a dual-threshold mechanism based on the geometric mean and use Kullback-Leibler divergence (KLD) to measure the information distance between coordinates. Numerical simulations and experiments were conducted to prove the superiority of IGDM for detecting multiple modulated signals in non-Gaussian noise, the results show that IGDM has adaptability and effectiveness under extremely low GSNR.

  • Location and History Information Aided Efficient Initial Access Scheme for High-Speed Railway Communications

    Chang SUN  Xiaoyu SUN  Jiamin LI  Pengcheng ZHU  Dongming WANG  Xiaohu YOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/09/14
      Vol:
    E107-B No:1
      Page(s):
    214-222

    The application of millimeter wave (mmWave) directional transmission technology in high-speed railway (HSR) scenarios helps to achieve the goal of multiple gigabit data rates with low latency. However, due to the high mobility of trains, the traditional initial access (IA) scheme with high time consumption is difficult to guarantee the effectiveness of the beam alignment. In addition, the high path loss at the coverage edge of the millimeter wave remote radio unit (mmW-RRU) will also bring great challenges to the stability of IA performance. Fortunately, the train trajectory in HSR scenarios is periodic and regular. Moreover, the cell-free network helps to improve the system coverage performance. Based on these observations, this paper proposes an efficient IA scheme based on location and history information in cell-free networks, where the train can flexibly select a set of mmW-RRUs according to the received signal quality. We specifically analyze the collaborative IA process based on the exhaustive search and based on location and history information, derive expressions for IA success probability and delay, and perform the numerical analysis. The results show that the proposed scheme can significantly reduce the IA delay and effectively improve the stability of IA success probability.

  • Neural Network Location Based on Weight Optimization with Genetic Algorithm under the Condition of Less Information

    Jian Hui WANG  Jia Liang WANG  Da Ming WANG  Wei Jia CUI  Xiu Kun REN  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E99-B No:11
      Page(s):
    2323-2331

    This paper puts forward the concept of cellular network location with less information which can overcome the weaknesses of the cellular location technology in practical applications. After a systematic introduction of less-information location model, this paper presents a location algorithm based on AGA (Adaptive Genetic Algorithm) and an optimized RBF (Radical Basis Function) neural network. The virtues of this algorithm are that it has high location accuracy, reduces the location measurement parameters and effectively enhances the robustness. The simulation results show that under the condition of less information, the optimized location algorithm can effectively solve the fuzzy points in the location model and satisfy the FCC's (Federal Communications Commission) requirements on location accuracy.

21-38hit(38hit)