The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Takashi MIYAMURA(12hit)

1-12hit
  • QoS Control Mechanism Based on Real-Time Measurement of Elephant Flows

    Rie HAYASHI  Takashi MIYAMURA  Eiji OKI  Kohei SHIOMOTO  

     
    PAPER-Network

      Vol:
    E90-B No:8
      Page(s):
    2081-2089

    This proposes a scalable QoS control scheme, called Elephant Flow Control Scheme (EFCS) for high-speed large-capacity networks; it controls congestion and provides appropriate bandwidth to normal users' flows by controlling just the elephant flows. EFCS introduces a sampling packet threshold and drops packets considering flow size. EFCS also adopts a compensation parameter to control elephant flows to an appropriate level. Numerical results show that the sampling threshold increases control accuracy by 20% while reducing the amount of memory needed for packet sampling by 60% amount of memory by packet sampling; the elephant flows are controlled as intended by the compensation parameter. As a result, EFCS provides sufficient bandwidth to normal TCP flows in a scalable manner.

  • Scalable Backup Configurations Creation for IP Fast Reroute

    Shohei KAMAMURA  Takashi MIYAMURA  Yoshihiko UEMATSU  Kohei SHIOMOTO  

     
    PAPER-Internet

      Vol:
    E94-B No:1
      Page(s):
    109-117

    IP Fast Reroute techniques have been proposed to achieve fast failure recovery, just a few milliseconds. The basic idea of IP Fast Reroute is to reduce recovery time by precomputing backup routes. The multiple routing configurations (MRC) algorithm was proposed to implement IP Fast Reroute. MRC prepares backup configurations, which are used for finding a detour route after a failure. However, this algorithm establishes too many backup configurations to recover from failures. We propose a new backup configuration computation algorithm that creates the fewest possible configurations. The basic idea is to construct a spanning tree that excludes failure links in each backup configuration. We show that the effectiveness of our algorithm is especially high in large-scale power-law networks.

  • Latest Trends in Traffic Matrix Modeling and Its Application to Multilayer TE

    Rie HAYASHI  Takashi MIYAMURA  Daisaku SHIMAZAKI  Eiji OKI  Kohei SHIOMOTO  

     
    SURVEY PAPER-Traffic Engineering and Multi-Layer Networking

      Vol:
    E90-B No:8
      Page(s):
    1912-1921

    We survey traffic matrix models, whose elements represent the traffic demand between source-destination pair nodes. Modeling the traffic matrix is useful for multilayer Traffic Engineering (TE) in IP optical networks. Multilayer TE techniques make the network so designed flexible and reliable. This is because it allows reconfiguration of the virtual network topology (VNT), which consists of a set of several lower-layer (optical) paths and is provided to the higher layer, in response to fluctuations (diurnal) in traffic demand. It is, therefore, important to synthetically generate traffic matrices as close to the real ones as possible to maximize the performance of multilayer TE. We compare several models and clarify their applicability to VNT design and control. We find that it is difficult in practice to make an accurate traffic matrix with conventional schemes because of the high cost for data measurement and the complicated calculations involved. To overcome these problems, we newly introduce a simplified traffic matrix model that is practical; it well mirrors real networks. Next, this paper presents our developed server, the IP Optical TE server. It performs multilayer TE in IP optical networks. We evaluate the effectiveness of multilayer TE using our developed IP Optical server and the simplified traffic matrix. We confirm that multilayer TE offers significant CAPEX savings. Similarly, we demonstrate basic traffic control in IP optical networks, and confirm the dynamic control of the network and the feasibility of the IP Optical TE server.

  • Estimation of Current Traffic Matrices from Long-Term Traffic Variations

    Yuichi OHSITA  Takashi MIYAMURA  Shin'ichi ARAKAWA  Eiji OKI  Kohei SHIOMOTO  Masayuki MURATA  

     
    PAPER-Network

      Vol:
    E92-B No:1
      Page(s):
    171-183

    Obtaining current traffic matrices is essential to traffic engineering (TE) methods. Because it is difficult to monitor traffic matrices, several methods for estimating them from link loads have been proposed. The models used in these methods, however, are incorrect for some real networks. Thus, methods improving the accuracy of estimation by changing routes also have been proposed. However, existing methods for estimating the traffic matrix by changing routes can only capture long-term variations and cannot obtain current traffic matrices accurately. In this paper, we propose a method for estimating current traffic matrices that uses route changes introduced by a TE method. In this method, we first estimate the long-term variations of traffic by using the link loads monitored at previous times. Then, we adjust the estimated long-term variations so as to fit the current link loads. In addition, when the traffic variation trends change and the estimated long-term variations fail to match the current traffic, our method detects mismatch. Then, so as to capture the current traffic variations, the method re-estimates the long-term variations after removing monitored data corresponding to the end-to-end traffic causing the mismatches. We evaluate our method through simulation. The results show that our method can estimate current traffic matrices accurately even when some end-to-end traffic changes suddenly.

  • Highly Efficient Multi-Band Optical Networks with Wavelength-Selective Band Switching Open Access

    Masahiro NAKAGAWA  Hiroki KAWAHARA  Takeshi SEKI  Takashi MIYAMURA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2022/11/04
      Vol:
    E106-B No:5
      Page(s):
    416-426

    Multi-band transmission technologies promise to cost-effectively expand the capacity of optical networks by exploiting low-loss spectrum windows beyond the conventional band used in already-deployed fibers. While such technologies offer a high potential for capacity upgrades, available capacity is seriously restricted not only by the wavelength-continuity constraint but also by the signal-to-noise ratio (SNR) constraint. In fact, exploiting more bands can cause higher SNR imbalance over multiple bands, which is mainly due to stimulated Raman scattering. To relax these constraints, we propose wavelength-selective band switching-enabled networks (BSNs), where each wavelength channel can be freely switched to any band and in any direction at any optical node on the route. We also present two typical optical node configurations utilizing all-optical wavelength converters, which can realize the switching proposal. Moreover, numerical analyses clarify that our BSN can reduce the fiber resource requirements by more than 20% compared to a conventional multi-band network under realistic conditions. We also discuss the impact of physical-layer performance of band switching operations on available benefits to investigate the feasibility of BSNs. In addition, we report on a proof-of-concept demonstration of a BSN with a prototype node, where C+L-band wavelength-division-multiplexed 112-Gb/s dual-polarization quadrature phase-shift keying signals are successfully transmitted while the bands of individual channels are switched node-by-node for up to 4 cascaded nodes.

  • Recent Progress in Optical Network Design and Control towards Human-Centered Smart Society Open Access

    Takashi MIYAMURA  Akira MISAWA  

     
    INVITED PAPER

      Pubricized:
    2023/09/19
      Vol:
    E107-B No:1
      Page(s):
    2-15

    In this paper, we investigate the evolution of an optical network architecture and discuss the future direction of research on optical network design and control. We review existing research on optical network design and control and present some open challenges. One of the important open challenges lies in multilayer resource optimization including IT and optical network resources. We propose an adaptive joint optimization method of IT resources and optical spectrum under time-varying traffic demand in optical networks while avoiding an increase in operation cost. We formulate the problem as mixed integer linear programming and then quantitatively evaluate the trade-off relationship between the optimality of reconfiguration and operation cost. We demonstrate that we can achieve sufficient network performance through the adaptive joint optimization while suppressing an increase in operation cost.

  • A New Content-Oriented Traffic Engineering for Content Distribution: CAR (Content Aware Routing)

    Shigeyuki YAMASHITA  Daiki IMACHI  Miki YAMAMOTO  Takashi MIYAMURA  Shohei KAMAMURA  Koji SASAYAMA  

     
    PAPER-Network System

      Vol:
    E98-B No:4
      Page(s):
    575-584

    Large-scale content transfer, especially video transfer, is now a dominant traffic component in the Internet. Originally, content transfer had a content-oriented feature, i.e., “Users do not care where content is retrieved. Users only take care of what content they obtain.” Conventional traffic engineering (TE) aims to obtain optimal routes for traffic between ingress and egress router pairs, i.e., TE has focused on a location-oriented approach that takes care of where to connect. With increased demand for content-oriented features for content traffic, TE needs to focus on content-oriented routing design. In this study, we therefore propose a novel approach to content-oriented TE, called content aware routing (CAR). In CAR, routes are designed for content and egress router pairs, i.e., content traffic toward a receiver-side router. Content demand can be flexibly distributed to multiple servers (i.e., repositories) providing the same content, meaning that content can be obtained from anywhere. CAR solves the optimization problem of minimizing maximum link utilization. If there are multiple optimal solutions, CAR selects a solution in which resource usage is minimized. Using numerical examples formulated by the linear programming problem, we evaluated CAR by comparing it with combinations of conventional content delivery networks and TE, i.e., location-oriented designs. Our numerical results showed that CAR improved maximum link utilization by up to 15%, with only a 5% increase of network resource usage.

  • A Large-Scale IP and Lambda Integrated Router Architecture

    Michihiro AOKI  Miki HIRANO  Nobuaki MATSUURA  Takashi KURIMOTO  Takashi MIYAMURA  Masahiro GOSHIMA  Keisuke KABASHIMA  Shigeo URUSHIDANI  

     
    PAPER

      Vol:
    E86-B No:8
      Page(s):
    2302-2309

    The growth in the volume of Internet traffic and the increasing variety of Internet applications require Internet backbone networks to be scalable and provided sophisticated quality of service (QoS) capabilities. Internet backbone routers have evolved to achieve sub-Tbps switching capacity in a single unit, but their switch architectures have limited scalability, causing QoS to degrade as the switches get bigger. Hence, we propose a large-scale IP and lambda integrated router architecture with scalable switches. We first describe the system architecture of our proposed backbone router and clarify the requirements for its switching capabilities to meet near-future demands. The new switch architecture, using crossbar-based switching fabrics and optical interconnection devices, meets the requirements for a backbone router to scale up to 82 Tbps and enable light path switching as well as packet switching. The routing tag and its usage algorithm in the switch, and packaging issues, including the quantity of hardware required for expansion, are also discussed.

  • Design and Architectural Concepts for Border Model Based IP/Optical Multi-Layer Service Networks

    Mallik TATIPAMULA  Zafar ALI  Ichiro INOUE  Takashi MIYAMURA  Shigeo URUSHIDANI  Shoichiro ASANO  

     
    INVITED PAPER

      Vol:
    E88-B No:10
      Page(s):
    3832-3840

    The bandwidth explosion ushered in by the popularity of the Internet has spurred the recent acceleration in the development and deployment of equipment supporting packet based broadband services. This coupled with the widespread deployment of WDM based Optical Transport Systems in the core network to satisfy the corresponding increase in capacity demand, has led network planners for tighter coordination between IP and Optical layers to increase reliability, robustness of next generation backbone network. In this paper, we propose a solution known as border model, which is tailored to address deployment concerns associated with GMPLS technology in existing networks. We extend our proposal to include, "Border model based Multi-layer service network architecture," to provide coordinated multi-layer IP and Optical services, for different network design scenarios. Resource Control is an important aspect of multi-layer service networks. This paper examines next generation requirements for resource control, defines resource control architecture and presents some evaluation results for multi-layer recovery techniques in the context of Multi-layer service network based on border model.

  • Scalable Network Emulator Architecture for IP Optical Network Management

    Eiji OKI  Nattapong KITSUWAN  Shunichi TSUNODA  Takashi MIYAMURA  Akeo MASUDA  Kohei SHIOMOTO  

     
    LETTER-Network

      Vol:
    E93-B No:7
      Page(s):
    1931-1934

    This letter proposes a scalable network emulator architecture to support IP optical network management. The network emulator uses the same router interfaces to communicate with the IP optical TE server as the actual IP optical network, and behaves as an actual IP optical network between the interfaces. The network emulator mainly consists of databases and three modules: interface module, resource simulator module, and traffic generator module. To make the network emulator scalable in terms of network size, we employ TCP/IP socket communications between the modules. The proposed network emulator has the benefit that its implementation is not strongly dependent on hardware limitations. We develop a prototype of the network emulator based on the proposed architecture. Our design and experiments show that the proposed architecture is effective.

  • Recommendation-Based Bandwidth Calendaring for Packet Transport Network

    Shohei KAMAMURA  Rie HAYASHI  Hiroki DATE  Hiroshi YAMAMOTO  Takashi MIYAMURA  Yoshihiko UEMATSU  Kouichi GENDA  

     
    PAPER-Network

      Pubricized:
    2016/08/04
      Vol:
    E100-B No:1
      Page(s):
    122-130

    This paper proposes a recommendation-based bandwidth calendaring system for packet transport networks. The system provides a user-portal interface with which users can directly reserve packet transport resources. In this regard, the system recommends multi-grade (e.g., multi-price) reservation plans. By adjusting grades of plans in accordance with network resource utilization, this system provides not only reservation flexibility for users but also efficient utilization of network resources. For recommending multi-grade plans, pre-computation of resource allocation is required for every time slot. Because the number of time slots is huge, we also propose an algorithm for fast computation of resource allocation based on time-slot aggregation. Our evaluation suggests that our algorithm can produce a sub-optimal solution within quasi-real time for a large-scale network. We also show that our recommendation-based system can increase the service-provider-revenue in peaky traffic demand environments.

  • A Buffer Management Mechanism for Achieving Approximately Fair Bandwidth Allocation in High-Speed Networks

    Takashi MIYAMURA  Takashi KURIMOTO  Kenji NAKAGAWA  Prasad DHANANJAYA  Michihiro AOKI  Naoaki YAMANAKA  

     
    PAPER

      Vol:
    E85-B No:8
      Page(s):
    1434-1441

    We propose a buffer management mechanism, called V-WFQ (Virtual Weighted Fair Queueing), for achieving an approximately fair allocation of bandwidth with a small amount of hardware in a high-speed network. The basic process for the allocation of bandwidth uses selective packet dropping that compares the measured input rate of the flow with an estimated fair share of bandwidth. Although V-WFQ is a hardware-efficient FIFO-based algorithm, it achieves almost ideal fairness in bandwidth allocation. V-WFQ can be implemented in the high-speed core routers of today's IP backbone networks to provide various high-quality services. We have investigated V-WFQ's performance in terms of fairness and link utilization through extensive simulation. The results of simulation show that V-WFQ achieves a good balance between fairness and link utilization under various simulation conditions.