The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

401-420hit(42807hit)

  • CMND: Consistent-Aware Multi-Server Network Design Model for Delay-Sensitive Applications

    Akio KAWABATA  Bijoy CHAND CHATTERJEE  Eiji OKI  

     
    PAPER-Network System

      Vol:
    E107-B No:3
      Page(s):
    321-329

    This paper proposes a network design model, considering data consistency for a delay-sensitive distributed processing system. The data consistency is determined by collating the own state and the states of slave servers. If the state is mismatched with other servers, the rollback process is initiated to modify the state to guarantee data consistency. In the proposed model, the selected servers and the master-slave server pairs are determined to minimize the end-to-end delay and the delay for data consistency. We formulate the proposed model as an integer linear programming problem. We evaluate the delay performance and computation time. We evaluate the proposed model in two network models with two, three, and four slave servers. The proposed model reduces the delay for data consistency by up to 31 percent compared to that of a typical model that collates the status of all servers at one master server. The computation time is a few seconds, which is an acceptable time for network design before service launch. These results indicate that the proposed model is effective for delay-sensitive applications.

  • A Reconstruction of Circular Binary String Using Substrings and Minimal Absent Words

    Takahiro OTA  Akiko MANADA  

     
    PAPER-Source Coding and Data Compression

      Pubricized:
    2023/09/05
      Vol:
    E107-A No:3
      Page(s):
    409-416

    A circular string formed by connecting the first and the last symbols of a string is one of the simplest sequence forms, and it has been used for many applications such as data compression and fragment assembly problem. A sufficient condition on the lengths of substrings with frequencies for reconstruction of an input circular binary string is shown. However, there are no detailed descriptions on the proof of the sufficient condition and reconstruction algorithm. In this paper, we prove a necessary and sufficient condition on the lengths of substrings with frequencies for reconstruction of the circular string. We show the length is shorter than that of previous study for some circular strings. For improving the length, we use minimal absent words (MAWs) for given substrings of length k, and we propose a new construction algorithm of MAWs of length h(>k) while a conventional construction algorithm of MAWs can construct MAWs of length l(≤k). Moreover, we propose reconstruction algorithm of an input circular string for given substrings satisfying the new condition.

  • Backdoor Attacks on Graph Neural Networks Trained with Data Augmentation

    Shingo YASHIKI  Chako TAKAHASHI  Koutarou SUZUKI  

     
    LETTER

      Pubricized:
    2023/09/05
      Vol:
    E107-A No:3
      Page(s):
    355-358

    This paper investigates the effects of backdoor attacks on graph neural networks (GNNs) trained through simple data augmentation by modifying the edges of the graph in graph classification. The numerical results show that GNNs trained with data augmentation remain vulnerable to backdoor attacks and may even be more vulnerable to such attacks than GNNs without data augmentation.

  • FOREWORD Open Access

    Noboru KUNIHIKO  

     
    FOREWORD

      Vol:
    E107-A No:3
      Page(s):
    192-192
  • FOREWORD Open Access

    Kazuaki KONDO  

     
    FOREWORD

      Vol:
    E107-D No:3
      Page(s):
    331-331
  • On a Spectral Lower Bound of Treewidth

    Tatsuya GIMA  Tesshu HANAKA  Kohei NORO  Hirotaka ONO  Yota OTACHI  

     
    LETTER

      Pubricized:
    2023/06/16
      Vol:
    E107-D No:3
      Page(s):
    328-330

    In this letter, we present a new lower bound for the treewidth of a graph in terms of the second smallest eigenvalue of its Laplacian matrix. Our bound slightly improves the lower bound given by Chandran and Subramanian [Inf. Process. Lett., 87 (2003)].

  • FOREWORD Open Access

    Nozomu TOGAWA  

     
    FOREWORD

      Vol:
    E107-A No:3
      Page(s):
    530-530
  • Dynamic Attentive Convolution for Facial Beauty Prediction

    Zhishu SUN  Zilong XIAO  Yuanlong YU  Luojun LIN  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2023/11/07
      Vol:
    E107-D No:2
      Page(s):
    239-243

    Facial Beauty Prediction (FBP) is a significant pattern recognition task that aims to achieve consistent facial attractiveness assessment with human perception. Currently, Convolutional Neural Networks (CNNs) have become the mainstream method for FBP. The training objective of most conventional CNNs is usually to learn static convolution kernels, which, however, makes the network quite difficult to capture global attentive information, and thus usually ignores the key facial regions, e.g., eyes, and nose. To tackle this problem, we devise a new convolution manner, Dynamic Attentive Convolution (DyAttenConv), which integrates the dynamic and attention mechanism into convolution in kernel-level, with the aim of enforcing the convolution kernels adapted to each face dynamically. DyAttenConv is a plug-and-play module that can be flexibly combined with existing CNN architectures, making the acquisition of the beauty-related features more globally and attentively. Extensive ablation studies show that our method is superior to other fusion and attention mechanisms, and the comparison with other state-of-the-arts also demonstrates the effectiveness of DyAttenConv on facial beauty prediction task.

  • A Data Augmentation Method for Fault Localization with Fault Propagation Context and VAE

    Zhuo ZHANG  Donghui LI  Lei XIA  Ya LI  Xiankai MENG  

     
    LETTER-Software Engineering

      Pubricized:
    2023/10/25
      Vol:
    E107-D No:2
      Page(s):
    234-238

    With the growing complexity and scale of software, detecting and repairing errant behaviors at an early stage are critical to reduce the cost of software development. In the practice of fault localization, a typical process usually includes three steps: execution of input domain test cases, construction of model domain test vectors and suspiciousness evaluation. The effectiveness of model domain test vectors is significant for locating the faulty code. However, test vectors with failing labels usually account for a small portion, which inevitably degrades the effectiveness of fault localization. In this paper, we propose a data augmentation method PVaug by using fault propagation context and variational autoencoder (VAE). Our empirical results on 14 programs illustrate that PVaug has promoted the effectiveness of fault localization.

  • Understanding File System Operations of a Secure Container Runtime Using System Call Tracing Technique

    Sunwoo JANG  Young-Kyoon SUH  Byungchul TAK  

     
    LETTER-Software System

      Pubricized:
    2023/11/01
      Vol:
    E107-D No:2
      Page(s):
    229-233

    This letter presents a technique that observes system call mapping behavior of the proxy kernel layer of secure container runtimes. We applied it to file system operations of a secure container runtime, gVisor. We found that gVisor's operations can become more expensive than the native by 48× more syscalls for open, and 6× for read and write.

  • Rotation-Invariant Convolution Networks with Hexagon-Based Kernels

    Yiping TANG  Kohei HATANO  Eiji TAKIMOTO  

     
    PAPER-Biocybernetics, Neurocomputing

      Pubricized:
    2023/11/15
      Vol:
    E107-D No:2
      Page(s):
    220-228

    We introduce the Hexagonal Convolutional Neural Network (HCNN), a modified version of CNN that is robust against rotation. HCNN utilizes a hexagonal kernel and a multi-block structure that enjoys more degrees of rotation information sharing than standard convolution layers. Our structure is easy to use and does not affect the original tissue structure of the network. We achieve the complete rotational invariance on the recognition task of simple pattern images and demonstrate better performance on the recognition task of the rotated MNIST images, synthetic biomarker images and microscopic cell images than past methods, where the robustness to rotation matters.

  • BRsyn-Caps: Chinese Text Classification Using Capsule Network Based on Bert and Dependency Syntax

    Jie LUO  Chengwan HE  Hongwei LUO  

     
    PAPER-Natural Language Processing

      Pubricized:
    2023/11/06
      Vol:
    E107-D No:2
      Page(s):
    212-219

    Text classification is a fundamental task in natural language processing, which finds extensive applications in various domains, such as spam detection and sentiment analysis. Syntactic information can be effectively utilized to improve the performance of neural network models in understanding the semantics of text. The Chinese text exhibits a high degree of syntactic complexity, with individual words often possessing multiple parts of speech. In this paper, we propose BRsyn-caps, a capsule network-based Chinese text classification model that leverages both Bert and dependency syntax. Our proposed approach integrates semantic information through Bert pre-training model for obtaining word representations, extracts contextual information through Long Short-term memory neural network (LSTM), encodes syntactic dependency trees through graph attention neural network, and utilizes capsule network to effectively integrate features for text classification. Additionally, we propose a character-level syntactic dependency tree adjacency matrix construction algorithm, which can introduce syntactic information into character-level representation. Experiments on five datasets demonstrate that BRsyn-caps can effectively integrate semantic, sequential, and syntactic information in text, proving the effectiveness of our proposed method for Chinese text classification.

  • Content-Adaptive Optimization Framework for Universal Deep Image Compression

    Koki TSUBOTA  Kiyoharu AIZAWA  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2023/10/24
      Vol:
    E107-D No:2
      Page(s):
    201-211

    While deep image compression performs better than traditional codecs like JPEG on natural images, it faces a challenge as a learning-based approach: compression performance drastically decreases for out-of-domain images. To investigate this problem, we introduce a novel task that we call universal deep image compression, which involves compressing images in arbitrary domains, such as natural images, line drawings, and comics. Furthermore, we propose a content-adaptive optimization framework to tackle this task. This framework adapts a pre-trained compression model to each target image during testing for addressing the domain gap between pre-training and testing. For each input image, we insert adapters into the decoder of the model and optimize the latent representation extracted by the encoder and the adapter parameters in terms of rate-distortion, with the adapter parameters transmitted per image. To achieve the evaluation of the proposed universal deep compression, we constructed a benchmark dataset containing uncompressed images of four domains: natural images, line drawings, comics, and vector arts. We compare our proposed method with non-adaptive and existing adaptive compression methods, and the results show that our method outperforms them. Our code and dataset are publicly available at https://github.com/kktsubota/universal-dic.

  • Semantic Relationship-Based Unsupervised Representation Learning of Multivariate Time Series

    Chengyang YE  Qiang MA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/11/16
      Vol:
    E107-D No:2
      Page(s):
    191-200

    Representation learning is a crucial and complex task for multivariate time series data analysis, with a wide range of applications including trend analysis, time series data search, and forecasting. In practice, unsupervised learning is strongly preferred owing to sparse labeling. However, most existing studies focus on the representation of individual subseries without considering relationships between different subseries. In certain scenarios, this may lead to downstream task failures. Here, an unsupervised representation learning model is proposed for multivariate time series that considers the semantic relationship among subseries of time series. Specifically, the covariance calculated by the Gaussian process (GP) is introduced to the self-attention mechanism, capturing relationship features of the subseries. Additionally, a novel unsupervised method is designed to learn the representation of multivariate time series. To address the challenges of variable lengths of input subseries, a temporal pyramid pooling (TPP) method is applied to construct input vectors with equal length. The experimental results show that our model has substantial advantages compared with other representation learning models. We conducted experiments on the proposed algorithm and baseline algorithms in two downstream tasks: classification and retrieval. In classification task, the proposed model demonstrated the best performance on seven of ten datasets, achieving an average accuracy of 76%. In retrieval task, the proposed algorithm achieved the best performance under different datasets and hidden sizes. The result of ablation study also demonstrates significance of semantic relationship in multivariate time series representation learning.

  • Development of a Coanda-Drone with Built-in Propellers

    Zejing ZHAO  Bin ZHANG  Hun-ok LIM  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/11/10
      Vol:
    E107-D No:2
      Page(s):
    180-190

    In this study, a Coanda-drone with length, width, and height of 121.6, 121.6, and 191[mm] was designed, and its total mass was 1166.7[g]. Using four propulsion devices, it could produce a maximum of 5428[g] thrust. Its structure is very different from conventional drones because in this study it combines the design of the jet engine of a jet fixed-wing drone with the fuselage structure layout of a rotary-wing drone. The advantage of jet drone's high propulsion is kept so that it can output greater thrust under the same variation of PWM waveform output. In this study, the propulsion device performs high-speed jetting, and the airflow around the propulsion device will also be jetted downward along the direction of the airflow.

  • RR-Row: Redirect-on-Write Based Virtual Machine Disk for Record/Replay

    Ying ZHAO  Youquan XIAN  Yongnan LI  Peng LIU  Dongcheng LI  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2023/11/06
      Vol:
    E107-D No:2
      Page(s):
    169-179

    Record/replay is one essential tool in clouds to provide many capabilities such as fault tolerance, software debugging, and security analysis by recording the execution into a log and replaying it deterministically later on. However, in virtualized environments, the log file increases heavily due to saving a considerable amount of I/O data, finally introducing significant storage costs. To mitigate this problem, this paper proposes RR-Row, a redirect-on-write based virtual machine disk for record/replay scenarios. RR-Row appends the written data into new blocks rather than overwrites the original blocks during normal execution so that all written data are reserved in the disk. In this way, the record system only saves the block id instead of the full content, and the replay system can directly fetch the data from the disk rather than the log, thereby reducing the log size a lot. In addition, we propose several optimizations for improving I/O performance so that it is also suitable for normal execution. We implement RR-Row for QEMU and conduct a set of experiments. The results show that RR-Row reduces the log size by 68% compared to the currently used Raw/QCow2 disk without compromising I/O performance.

  • Capacitive Wireless Power Transfer System with Misalignment Tolerance in Flowing Freshwater Environments

    Yasumasa NAKA  Akihiko ISHIWATA  Masaya TAMURA  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2023/08/01
      Vol:
    E107-C No:2
      Page(s):
    47-56

    The misalignment of a coupler is a significant issue for capacitive wireless power transfer (WPT). This paper presents a capacitive WPT system specifically designed for underwater drones operating in flowing freshwater environments. The primary design features include a capacitive coupler with an opposite relative position between feeding and receiving points on the coupler electrode, two phase compensation circuits, and a load-independent inverter. A stable and energy-efficient power transmission is achieved by maintaining a 90° phase difference on the coupler electrode in dielectrics with a large unloaded quality factor (Q factor), such as in freshwater. Although a 622-mm coupler electrode is required at 13.56MHz, the phase compensation circuits can reduce to 250mm as one example, which is mountable to small underwater drones. Furthermore, the electricity waste is automatically reduced using the constant-current (CC) output inverter in the event of misalignment where efficiency drops occur. Finally, their functions are simulated and demonstrated at various receiver positions and transfer distances in tap water.

  • Invisible Digital Image by Thin-Film Interference of Niobium Oxide Using Its Periodic Repeatability Open Access

    Shuichi MAEDA  Akihiro FUKAMI  Kaiki YAMAZAKI  

     
    INVITED PAPER

      Pubricized:
    2023/08/22
      Vol:
    E107-C No:2
      Page(s):
    42-46

    There are several benefits of the information that is invisible to the human eye. “Invisible” here means that it can be visualized or quantified when using instruments. For example, it can improve security without compromising product design. We have succeeded in making an invisible digital image on a metal substrate using periodic repeatability by thin-film interference of niobium oxides. Although this digital information is invisible in the visible light wavelength range of 400-800nm, but detectable in the infrared light that of 800-1150nm. This technology has a potential to be applied to anti-counterfeiting and traceability.

  • Electrically Controllable Light Scattering Properties of Nematic Liquid Crystal/Polyfluorene Gel Devices Open Access

    Asuka YAGI  Michinori HONMA  Ryota ITO  Toshiaki NOSE  

     
    INVITED PAPER

      Pubricized:
    2023/08/10
      Vol:
    E107-C No:2
      Page(s):
    29-33

    In recent years, demand for smart windows with dimming and other functions has been increasing, e.g., polymer dispersed liquid crystals. Liquid crystal (LC) gels also have the potential for smart glass applications owing to their light-scattering properties. In this study, LC gels were prepared by mixing nematic LC (E7) with poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) as a gelator. The LC gel formed a dense PFO network as the concentration increased. The PFO network structure changed in response to the change in the cooling rate. High contrast ratio of light scattering was obtained for the LC gel device that was fabricated via the 2-wt%-doping of PFO and natural cooling. Furthermore, the PFO concentration and cooling rate were found to affect the response time of the LC gel device.

  • Universal Angle Visibility Realized by a Volumetric 3D Display Using a Rotating Mirror-Image Helix Screen Open Access

    Karin WAKATSUKI  Chiemi FUJIKAWA  Makoto OMODANI  

     
    INVITED PAPER

      Pubricized:
    2023/08/03
      Vol:
    E107-C No:2
      Page(s):
    23-28

    Herein, we propose a volumetric 3D display in which cross-sectional images are projected onto a rotating helix screen. The method employed by this display can enable image observation from universal directions. A major challenge associated with this method is the presence of invisible regions that occur depending on the observation angle. This study aimed to fabricate a mirror-image helix screen with two helical surfaces coaxially arranged in a plane-symmetrical configuration. The visible region was actually measured to be larger than the visible region of the conventional helix screen. We confirmed that the improved visible region was almost independent of the observation angle and that the visible region was almost equally wide on both the left and right sides of the rotation axis.

401-420hit(42807hit)