The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

481-500hit(42807hit)

  • A Single-Inverter-Based True Random Number Generator with On-Chip Clock-Tuning-Based Entropy Calibration Circuit

    Xingyu WANG  Ruilin ZHANG  Hirofumi SHINOHARA  

     
    PAPER

      Pubricized:
    2023/07/21
      Vol:
    E107-A No:1
      Page(s):
    105-113

    This paper introduces an inverter-based true random number generator (I-TRNG). It uses a single CMOS inverter to amplify thermal noise multiple times. An adaptive calibration mechanism based on clock tuning provides robust operation across a wide range of supply voltage 0.5∼1.1V and temperature -40∼140°C. An 8-bit Von-Neumann post-processing circuit (VN8W) is implemented for maximum raw entropy extraction. In a 130nm CMOS technology, the I-TRNG entropy source only occupies 635μm2 and consumes 0.016pJ/raw-bit at 0.6V. The I-TRNG occupies 13406μm2, including the entropy source, adaptive calibration circuit, and post-processing circuit. The minimum energy consumption of the I-TRNG is 1.38pJ/bit at 0.5V, while passing all NIST 800-22 and 800-90B tests. Moreover, an equivalent 15-year life at 0.7V, 25°C is confirmed by an accelerated NBTI aging test.

  • Consideration of Integrated Low-Frequency Low-Pass Notch Filter Employing CCII Based Capacitance Multipliers

    Fujihiko MATSUMOTO  Hinano OHTSU  

     
    LETTER

      Pubricized:
    2023/07/19
      Vol:
    E107-A No:1
      Page(s):
    114-118

    In a field of biomedical engineering, not only low-pass filters for high frequency elimination but also notch filters for suppressing powerline interference are necessary to process low-frequency biosignals. For integration of low-frequency filters, chip implementation of large capacitances is major difficulty. As methods to enhance capacitances with small chip area, use of capacitance multipliers is effective. This letter describes design consideration of integrated low-frequency low-pass notch filter employing capacitance multipliers. Two main points are presented. Firstly, a new floating capacitance multiplier is proposed. Secondly, a technique to reduce the number of capacitance multipliers is proposed. By this technique, power consumption is reduced. The proposed techniques are applied a 3rd order low-pass notch filter. Simulation results show the effectiveness of the proposed techniques.

  • Construction of a Class of Linear Codes with at Most Three-Weight and the Application

    Wenhui LIU  Xiaoni DU  Xingbin QIAO  

     
    PAPER-Coding Theory

      Pubricized:
    2023/06/26
      Vol:
    E107-A No:1
      Page(s):
    119-124

    Linear codes are widely studied due to their important applications in secret sharing schemes, authentication codes, association schemes and strongly regular graphs, etc. In this paper, firstly, a class of three-weight linear codes is constructed by selecting a new defining set, whose weight distributions are determined by exponential sums. Results show that almost all the constructed codes are minimal and thus can be used to construct secret sharing schemes with sound access structures. Particularly, a class of projective two-weight linear codes is obtained and based on which a strongly regular graph with new parameters is designed.

  • Network Traffic Anomaly Detection: A Revisiting to Gaussian Process and Sparse Representation

    Yitu WANG  Takayuki NAKACHI  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2023/06/27
      Vol:
    E107-A No:1
      Page(s):
    125-133

    Seen from the Internet Service Provider (ISP) side, network traffic monitoring is an indispensable part during network service provisioning, which facilitates maintaining the security and reliability of the communication networks. Among the numerous traffic conditions, we should pay extra attention to traffic anomaly, which significantly affects the network performance. With the advancement of Machine Learning (ML), data-driven traffic anomaly detection algorithms have established high reputation due to the high accuracy and generality. However, they are faced with challenges on inefficient traffic feature extraction and high computational complexity, especially when taking the evolving property of traffic process into consideration. In this paper, we proposed an online learning framework for traffic anomaly detection by embracing Gaussian Process (GP) and Sparse Representation (SR) in two steps: 1). To extract traffic features from past records, and better understand these features, we adopt GP with a special kernel, i.e., mixture of Gaussian in the spectral domain, which makes it possible to more accurately model the network traffic for improving the performance of traffic anomaly detection. 2). To combat noise and modeling error, observing the inherent self-similarity and periodicity properties of network traffic, we manually design a feature vector, based on which SR is adopted to perform robust binary classification. Finally, we demonstrate the superiority of the proposed framework in terms of detection accuracy through simulation.

  • Low-Complexity Digital Channelizer Design for Software Defined Radio

    Jinguang HAO  Gang WANG  Honggang WANG  Lili WANG  Xuefeng LIU  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2023/07/19
      Vol:
    E107-A No:1
      Page(s):
    134-140

    In software defined radio systems, a channelizer plays an important role in extracting the desired signals from a wideband signal. Compared to the conventional methods, the proposed scheme provides a solution to design a digital channelizer extracting the multiple subband signals at different center frequencies with low complexity. To do this, this paper formulates the problem as an optimization problem, which minimizes the required multiplications number subject to the constraints of the ripple in the passbands and the stopbands for single channel and combined multiple channels. In addition, a solution to solve the optimization problem is also presented and the corresponding structure is demonstrated. Simulation results show that the proposed scheme requires smaller number of the multiplications than other conventional methods. Moreover, unlike other methods, this structure can process signals with different bandwidths at different center frequencies simultaneously only by changing the status of the corresponding multiplexers without hardware reimplementation.

  • CCTSS: The Combination of CNN and Transformer with Shared Sublayer for Detection and Classification

    Aorui GOU  Jingjing LIU  Xiaoxiang CHEN  Xiaoyang ZENG  Yibo FAN  

     
    PAPER-Image

      Pubricized:
    2023/07/06
      Vol:
    E107-A No:1
      Page(s):
    141-156

    Convolutional Neural Networks (CNNs) and Transformers have achieved remarkable performance in detection and classification tasks. Nevertheless, their feature extraction cannot consider both local and global information, so the detection and classification performance can be further improved. In addition, more and more deep learning networks are designed as more and more complex, and the amount of computation and storage space required is also significantly increased. This paper proposes a combination of CNN and transformer, and designs a local feature enhancement module and global context modeling module to enhance the cascade network. While the local feature enhancement module increases the range of feature extraction, the global context modeling is used to capture the feature maps' global information. To decrease the model complexity, a shared sublayer is designed to realize the sharing of weight parameters between the adjacent convolutional layers or cross convolutional layers, thereby reducing the number of convolutional weight parameters. Moreover, to effectively improve the detection performance of neural networks without increasing network parameters, the optimal transport assignment approach is proposed to resolve the problem of label assignment. The classification loss and regression loss are the summations of the cost between the demander and supplier. The experiment results demonstrate that the proposed Combination of CNN and Transformer with Shared Sublayer (CCTSS) performs better than the state-of-the-art methods in various datasets and applications.

  • High Precision Fingerprint Verification for Small Area Sensor Based on Deep Learning

    Nabilah SHABRINA  Dongju LI  Tsuyoshi ISSHIKI  

     
    PAPER-Biometrics

      Pubricized:
    2023/06/26
      Vol:
    E107-A No:1
      Page(s):
    157-168

    The fingerprint verification system is widely used in mobile devices because of fingerprint's distinctive features and ease of capture. Typically, mobile devices utilize small sensors, which have limited area, to capture fingerprint. Meanwhile, conventional fingerprint feature extraction methods need detailed fingerprint information, which is unsuitable for those small sensors. This paper proposes a novel fingerprint verification method for small area sensors based on deep learning. A systematic method combines deep convolutional neural network (DCNN) in a Siamese network for feature extraction and XGBoost for fingerprint similarity training. In addition, a padding technique also introduced to avoid wraparound error problem. Experimental results show that the method achieves an improved accuracy of 66.6% and 22.6% in the FingerPassDB7 and FVC2006DB1B dataset, respectively, compared to the existing methods.

  • Prime-Factor GFFT Architecture for Fast Frequency Domain Decoding of Cyclic Codes

    Yanyan CHANG  Wei ZHANG  Hao WANG  Lina SHI  Yanyan LIU  

     
    LETTER-Coding Theory

      Pubricized:
    2023/07/10
      Vol:
    E107-A No:1
      Page(s):
    174-177

    This letter introduces a prime-factor Galois field Fourier transform (PF-GFFT) architecture to frequency domain decoding (FDD) of cyclic codes. Firstly, a fast FDD scheme is designed which converts the original single longer Fourier transform to a multi-dimensional smaller transform. Furthermore, a ladder-shift architecture for PF-GFFT is explored to solve the rearrangement problem of input and output data. In this regard, PF-GFFT is considered as a lower order spectral calculation scheme, which has sufficient preponderance in reducing the computational complexity. Simulation results show that PF-GFFT compares favorably with the current general GFFT, simplified-GFFT (S-GFFT), and circular shifts-GFFT (CS-GFFT) algorithms in time-consuming cost, and is nearly an order of magnitude or smaller than them. The superiority is a benefit to improving the decoding speed and has potential application value in decoding cyclic codes with longer code lengths.

  • A Fast Intra Mode Decision Algorithm in VVC Based on Feature Cross for Screen Content Videos

    Zhi LIU  Siyuan ZHANG  Xiaohan GUAN  Mengmeng ZHANG  

     
    LETTER-Coding Theory

      Pubricized:
    2023/07/24
      Vol:
    E107-A No:1
      Page(s):
    178-181

    In previous machine learning based fast intra mode decision algorithms for screen content videos, feature design is a key task and it is always difficult to obtain distinguishable features. In this paper, the idea of interaction of features is introduced to fast video coding algorithm, and a fast intra mode decision algorithm based on feature cross is proposed for screen content videos. The numeric features and category features are designed based on the characteristics of screen content videos, and the adaptive factorization network (AFN) is improved and adopted to carry out feature interaction to designed features, and output distinguishable features. The experimental results show that for AI (All Intra) configuration, compared with standard VVC/H.266, the coding time is reduced by 29.64% and the BD rate is increased only by 1.65%.

  • A Simple Design of Reconfigurable Intelligent Surface-Assisted Index Modulation: Generalized Reflected Phase Modulation

    Chaorong ZHANG  Yuyang PENG  Ming YUE  Fawaz AL-HAZEMI  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2023/05/30
      Vol:
    E107-A No:1
      Page(s):
    182-186

    As a potential member of next generation wireless communications, the reconfigurable intelligent surface (RIS) can control the reflected elements to adjust the phase of the transmitted signal with less energy consumption. A novel RIS-assisted index modulation scheme is proposed in this paper, which is named the generalized reflected phase modulation (GRPM). In the GRPM, the transmitted bits are mapped into the reflected phase combination which is conveyed through the reflected elements on the RIS, and detected by the maximum likelihood (ML) detector. The performance analysis of the GRPM with the ML detector is presented, in which the closed form expression of pairwise error probability is derived. The simulation results show the bit error rate (BER) performance of GRPM by comparing with various RIS-assisted index modulation schemes in the conditions of various spectral efficiency and number of antennas.

  • FOREWORD Open Access

    Hideaki FURUKAWA  

     
    FOREWORD

      Vol:
    E107-B No:1
      Page(s):
    1-1
  • Recent Progress in Optical Network Design and Control towards Human-Centered Smart Society Open Access

    Takashi MIYAMURA  Akira MISAWA  

     
    INVITED PAPER

      Pubricized:
    2023/09/19
      Vol:
    E107-B No:1
      Page(s):
    2-15

    In this paper, we investigate the evolution of an optical network architecture and discuss the future direction of research on optical network design and control. We review existing research on optical network design and control and present some open challenges. One of the important open challenges lies in multilayer resource optimization including IT and optical network resources. We propose an adaptive joint optimization method of IT resources and optical spectrum under time-varying traffic demand in optical networks while avoiding an increase in operation cost. We formulate the problem as mixed integer linear programming and then quantitatively evaluate the trade-off relationship between the optimality of reconfiguration and operation cost. We demonstrate that we can achieve sufficient network performance through the adaptive joint optimization while suppressing an increase in operation cost.

  • Bandwidth Abundant Optical Networking Enabled by Spatially-Jointed and Multi-Band Flexible Waveband Routing Open Access

    Hiroshi HASEGAWA  

     
    INVITED PAPER

      Pubricized:
    2023/09/19
      Vol:
    E107-B No:1
      Page(s):
    16-26

    The novel optical path routing architecture named flexible waveband routing networks is reviewed in this paper. The nodes adopt a two-stage path routing scheme where wavelength selective switches (WSSs) bundle optical paths and form a small number of path groups and then optical switches without wavelength selectivity route these groups to desired outputs. Substantial hardware scale reduction can be achieved as the scheme enables us to use small scale WSSs, and even more, share a WSS by multiple input cores/fibers through the use of spatially-joint-switching. Furthermore, path groups distributed over multiple bands can be switched by these optical switches and thus the adaptation to multi-band transmission is straightforward. Network-wide numerical simulations and transmission experiments that assume multi-band transmission demonstrate the validity of flexible waveband routing.

  • Crosstalk-Aware Resource Allocation Based on Optical Path Adjacency and Crosstalk Budget for Space Division Multiplexing Elastic Optical Networks

    Kosuke KUBOTA  Yosuke TANIGAWA  Yusuke HIROTA  Hideki TODE  

     
    PAPER

      Pubricized:
    2023/09/12
      Vol:
    E107-B No:1
      Page(s):
    27-38

    To cope with the drastic increase in traffic, space division multiplexing elastic optical networks (SDM-EONs) have been investigated. In multicore fiber environments that realize SDM-EONs, crosstalk (XT) occurs between optical paths transmitted in the same frequency slots of adjacent cores, and the quality of the optical paths is degraded by the mutual influence of XT. To solve this problem, we propose a core and spectrum assignment method that introduces the concept of prohibited frequency slots to protect the degraded optical paths. First-fit-based spectrum resource allocation algorithms, including our previous study, have the problem that only some frequency slots are used at low loads, and XT occurs even though sufficient frequency slots are available. In this study, we propose a core and spectrum assignment method that introduces the concepts of “adjacency criterion” and “XT budget” to suppress XT at low and middle loads without worsening the path blocking rate at high loads. We demonstrate the effectiveness of the proposed method in terms of the path blocking rate using computer simulations.

  • Demodulation Framework Based on Machine Learning for Unrepeated Transmission Systems

    Ryuta SHIRAKI  Yojiro MORI  Hiroshi HASEGAWA  

     
    PAPER

      Pubricized:
    2023/09/14
      Vol:
    E107-B No:1
      Page(s):
    39-48

    We propose a demodulation framework to extend the maximum distance of unrepeated transmission systems, where the simplest back propagation (BP), polarization and phase recovery, data arrangement for machine learning (ML), and symbol decision based on ML are rationally combined. The deterministic waveform distortion caused by fiber nonlinearity and chromatic dispersion is partially eliminated by BP whose calculation cost is minimized by adopting the single-step Fourier method in a pre-processing step. The non-deterministic waveform distortion, i.e., polarization and phase fluctuations, can be eliminated in a precise manner. Finally, the optimized ML model conducts the symbol decision under the influence of residual deterministic waveform distortion that cannot be cancelled by the simplest BP. Extensive numerical simulations confirm that a DP-16QAM signal can be transmitted over 240km of a standard single-mode fiber without optical repeaters. The maximum transmission distance is extended by 25km.

  • FOREWORD Open Access

    Tetsuya OISHI  

     
    FOREWORD

      Vol:
    E107-B No:1
      Page(s):
    49-49
  • D2EcoSys: Decentralized Digital Twin EcoSystem Empower Co-Creation City-Level Digital Twins Open Access

    Kenji KANAI  Hidehiro KANEMITSU  Taku YAMAZAKI  Shintaro MORI  Aram MINE  Sumiko MIYATA  Hironobu IMAMURA  Hidenori NAKAZATO  

     
    INVITED PAPER

      Pubricized:
    2023/10/26
      Vol:
    E107-B No:1
      Page(s):
    50-62

    A city-level digital twin is a critical enabling technology to construct a smart city that helps improve citizens' living conditions and quality of life. Currently, research and development regarding the digital replica city are pursued worldwide. However, many research projects only focus on creating the 3D city model. A mechanism to involve key players, such as data providers, service providers, and application developers, is essential for constructing the digital replica city and producing various city applications. Based on this motivation, the authors of this paper are pursuing a research project, namely Decentralized Digital Twin EcoSystem (D2EcoSys), to create an ecosystem to advance (and self-grow) the digital replica city regarding time and space directions, city services, and values. This paper introduces an overview of the D2EcoSys project: vision, problem statement, and approach. In addition, the paper discusses the recent research results regarding networking technologies and demonstrates an early testbed built in the Kashiwa-no-ha smart city.

  • Transmission Performance Evaluation of Local 5G Downlink Data Channel in SU-MIMO System under Outdoor Environments

    Hiroki URASAWA  Hayato SOYA  Kazuhiro YAMAGUCHI  Hideaki MATSUE  

     
    PAPER

      Pubricized:
    2023/10/11
      Vol:
    E107-B No:1
      Page(s):
    63-73

    We evaluated the transmission performance, including received power and transmission throughput characteristics, in 4×4 single-user multiple-input multiple-output (SU-MIMO) transmission for synchronous time division duplex (TDD) and downlink data channels in comparison with single-input single-output (SISO) transmission in an environment where a local 5G wireless base station was installed on the roof of a research building at our university. Accordingly, for the received power characteristics, the difference between the simulation value, which was based on the ray tracing method, and the experimental value at 32 points in the area was within a maximum difference of approximately 10 dB, and sufficient compliance was obtained. Regarding the transmission throughput versus received power characteristics, after showing a simulation method for evaluating throughput characteristics in MIMO, we compared the results with experimental results. The cumulative distribution function (CDF) of the transmission throughput shows that, at a CDF of 50%, in SISO transmission, the simulated value is approximately 115Mbps, and the experimental value is 105Mbps, within a difference of approximately 10Mbps. By contrast, in MIMO transmission, the simulation value is 380Mbps, and the experimental value is approximately 420Mbps, which is a difference of approximately 40Mbps. It was shown that the received power and transmission throughput characteristics can be predicted with sufficient accuracy by obtaining the delay profile and the system model at each reception point using the both ray tracing and MIMO simulation methods in actual environments.

  • Adaptive K-Repetition Transmission with Site Diversity Reception for Energy-Efficient Grant-Free URLLC in 5G NR

    Arif DATAESATU  Kosuke SANADA  Hiroyuki HATANO  Kazuo MORI  Pisit BOONSRIMUANG  

     
    PAPER

      Pubricized:
    2023/10/11
      Vol:
    E107-B No:1
      Page(s):
    74-84

    The fifth-generation (5G) new radio (NR) standard employs ultra-reliable and low-latency communication (URLLC) to provide real-time wireless interactive capability for the internet of things (IoT) applications. To satisfy the stringent latency and reliability demands of URLLC services, grant-free (GF) transmissions with the K-repetition transmission (K-Rep) have been introduced. However, fading fluctuations can negatively impact signal quality at the base station (BS), leading to an increase in the number of repetitions and raising concerns about interference and energy consumption for IoT user equipment (UE). To overcome these challenges, this paper proposes novel adaptive K-Rep control schemes that employ site diversity reception to enhance signal quality and reduce energy consumption. The performance evaluation demonstrates that the proposed adaptive K-Rep control schemes significantly improve communication reliability and reduce transmission energy consumption compared with the conventional K-Rep scheme, and then satisfy the URLLC requirements while reducing energy consumption.

  • Performance Evaluation and Demonstration of Real-Time Vehicle Control Information Exchange Using 5G New Radio Sidelink for Automated Follower Truck Platooning Open Access

    Manabu MIKAMI  Hitoshi YOSHINO  

     
    PAPER

      Pubricized:
    2023/10/11
      Vol:
    E107-B No:1
      Page(s):
    85-93

    Fifth generation mobile communication system (5G) mobile operators need to explore new use cases and/or applications together with vertical industries, the industries that are potential users of 5G, in order to fully exploit the new 5G capabilities in terms of its application. Vehicle-to-Everything (V2X) communications for platooning are considered to be one of new 5G use cases whose ultra reliable and low latency communication (URLLC) aspects are required. The authors build a field experimental environment, towards application to truck platooning, with actual large-size trucks and a prototype system, for 5G New Radio (NR) technology based V2X communications. Its most distinctive feature is that the 5G NR-V2X prototype system is equipped with UE-to-UE radio interface (i.e., sidelink) for V2V Direct communication, in addition to the traditional radio interfaces between BS and UE for V2N/V2N2V communications. This paper presents performance evaluation and demonstration of real-time vehicle control information exchange using over the sidelink of 5G NR-V2X prototype system for automated follower truck platooning. This paper evaluates the V2V Direct communication latency and reliability performance of the sidelink, and clarify 5G NR sidelink achieves lower peak of latency and higher packet reception rate in V2V Direct communication performance than an optical wireless communication system product. Then, it also introduces a 5G URLLC use case demonstration of automated follower truck platooning trial employed with the prototype system in a public expressway environment.

481-500hit(42807hit)