The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

5961-5980hit(42807hit)

  • Positioning Error Reduction Techniques for Precision Navigation by Post-Processing

    Yu Min HWANG  Sun Yui LEE  Isaac SIM  Jin Young KIM  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:10
      Page(s):
    2158-2161

    With the increasing demand of Internet-of-Things applicability in various devices and location-based services (LBSs) with positioning capabilities, we proposed simple and effective post-processing techniques to reduce positioning error and provide more precise navigation to users in a pedestrian environment in this letter. The proposed positioning error reduction techniques (Technique 1-minimum range securement and bounce elimination, Technique 2-direction vector-based error correction) were studied considering low complexity and wide applicability to various types of positioning systems, e.g., global positioning system (GPS). Through the real field tests in urban areas, we have verified that an average positioning error of the proposed techniques is significantly decreased compared to that of a GPS-only environment.

  • Fast Parameter Estimation for Polyphase P Codes Modulated Radar Signals

    Qi ZHANG  Pei WANG  Jun ZHU  Bin TANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:10
      Page(s):
    2162-2166

    A fast parameter estimation method with a coarse estimation and a fine estimation for polyphase P coded signals is proposed. For a received signal with N sampling points, the proposed method has an improved performance when the signal-to-noise ratio (SNR) is larger than 2dB and a lower computational complexity O(N logs N) compared with the latest time-frequency rate estimation method whose computational complexity is O(N2).

  • Generalized Framework to Attack RSA with Special Exposed Bits of the Private Key

    Shixiong WANG  Longjiang QU  Chao LI  Shaojing FU  

     
    PAPER-Cryptography and Information Security

      Vol:
    E100-A No:10
      Page(s):
    2113-2122

    In this paper, we study partial key exposure attacks on RSA where the number of unexposed blocks of the private key is greater than or equal to one. This situation, called generalized framework of partial key exposure attack, was first shown by Sarkar [22] in 2011. Under a certain condition for the values of exposed bits, we present a new attack which needs fewer exposed bits and thus improves the result in [22]. Our work is a generalization of [28], and the approach is based on Coppersmith's method and the technique of unravelled linearization.

  • A Study on Multi-User Interference Cancellers for Synchronous Optical CDMA Systems — Decision Distance and Bit Error Rate —

    Tomoko K. MATSUSHIMA  Masaki KAKUYAMA  Yuya MURATA  Yasuaki TERAMACHI  Shoichiro YAMASAKI  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E100-A No:10
      Page(s):
    2135-2145

    Several kinds of techniques for excellent multi-user interference (MUI) cancellation have been proposed for direct-detection synchronous optical code division multiple access (OCDMA) systems. All these techniques utilize modified prime sequence codes (MPSCs) as signature codes and can remove MUI errors efficiently. In this paper, the features of three typical MUI cancellers are studied and compared in detail. The authors defined the parameter “decision distance” to show the feature of MUI cancellers. The bit error rate performance of each canceller is investigated by computer simulation and compared with that of the basic on-off keying (OOK) scheme without cancellation. Then, we investigate the relationship between the decision distance and the bit error rate performance. It is shown that every canceller has a better bit error rate performance than the basic OOK scheme. Especially, the equal weight orthogonal (EWO) scheme, whose decision distance is the largest, has the best error resistance property of the three MUI cancellers. The results show that the decision distance is a useful index to evaluate the error resistance property of MUI cancellation schemes.

  • Capacity Analysis for Rayleigh/Gamma-Gamma Mixed RF/FSO Link with Fixed-Gain AF Relay

    Banibrata BAG  Akinchan DAS  Aniruddha CHANDRA  Chayanika BOSE  

     
    PAPER

      Pubricized:
    2017/04/20
      Vol:
    E100-B No:10
      Page(s):
    1747-1757

    Free-space optical (FSO) communication, which offers better data rate at a lower cost compared to radio-frequency (RF) backhauls, and is much easier to setup and maintain than optical cables, is gaining attention as an attractive substitute. Average capacity is one of the main performances metrics to understand the connectivity and data rates of a communication system but the performance analysis for mixed RF/FSO link is not straightforward as the RF link and the FSO link experiences different atmospheric perturbations. In this paper, we have investigated the ergodic capacity of a dual-hop mixed RF/FSO communication system realized with an average power scaling (APS) based amplify and forward (AF) relay. Assuming moderate to strong atmospheric turbulence, the FSO link is modeled by gamma-gamma distribution while it is assumed that the RF link experiences multipath Rayleigh fading. Simple analytical methods have been devised for obtaining concise closed-form expressions for ergodic capacity under four different rate/ power adaptation policies and are validated through extensive Monte Carlo simulations.

  • Re-Polarization Processing in Extended Polar Codes

    Yu-Ming HUANG  Hsie-Chia CHANG  Hsiang-Pang LI  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2017/03/13
      Vol:
    E100-B No:10
      Page(s):
    1765-1777

    In this paper, extended polar codes based on re-polarization technique are proposed. The presented schemes extend a conventional polar code of length N to length N+q, which stand in contrast to known length-compatible schemes such as puncturing and shortening techniques that reduce the length from N to N-q. For certain specific lengths, the waterfall region performance of our extended polar code is superior to that of other length-compatible polar codes. It provides better reliability and reduces the management overhead in several storage devices and communications systems. In essence, extended polar codes are created by re-polarizing the q least reliable nonfrozen bit-channels with the help of q additional frozen bit-channels. It is proved that this re-polarization enhances the reliability of these bits. Moreover, the extended schemes can be not only modified to improve decoding performance, but generalized as a m-stage scheme to improve throughput significantly. With parallel operation, the throughput is improved around 2m-1 times when q is small. Compared to a shortened polar code with length 1536, the encoding and decoding complexities of an extended polar code are only 50% and 60.5%, respectively.

  • Routing-Based Mobility Architecture for Future 5G Cellular Networks Open Access

    Yo NISHIYAMA  Masanori ISHINO  Yuki KOIZUMI  Toru HASEGAWA  Kohei SUGIYAMA  Atsushi TAGAMI  

     
    PAPER-Network

      Pubricized:
    2017/03/01
      Vol:
    E100-B No:10
      Page(s):
    1789-1797

    In the 5G era, centralized mobility management raises the issue of traffic concentration on the mobility anchor. Distributed mobility management is expected to be a solution for this issue, as it moves mobility anchor functions to multiple edge routers. However, it incurs path stretch and redundant traffic on the backhaul links. Although these issues were not considered important in the 3G/4G era, they are expected to be a serious problem in the 5G era. In this paper, we design a routing-based mobility management mechanism to address the above problems. The mechanism integrates distributed routing with Bloom Filters and an anchor-less scheme where edge routers work as mobility anchors. Simulations show that the proposed mechanism achieves a good balance between redundant traffic on the backhaul links and routing overhead.

  • Delay Insertion Based P2PTV Traffic Localization Considering Peer's Relaying Capability

    Chitapong WECHTAISONG  Hiroaki MORINO  

     
    PAPER-Network

      Pubricized:
    2017/03/23
      Vol:
    E100-B No:10
      Page(s):
    1798-1806

    Recently, P2PTV is a popular application to deliver video streaming data over the Internet. On the overlay network, P2PTV applications create logical links between pairs of peers considering round trip time (RTT) without physical network consideration. P2PTV packets are shared over a network without localization awareness which is a serious problem for Internet Service Providers (ISPs). A delay-insertion-based traffic localization scheme was proposed for solving this problem. However, this scheme sometimes leads the newly joining peer to download streaming traffic from a local neighbor peer which has only scarce upload bandwidth. This paper proposes a novel scheme of delay-insertion-based traffic localization in which the router estimates relay capability to each relay peer candidate and leads the newly joining peer to connect to a neighbor peer with sufficient performance for relaying video data. Parameters were evaluated for the optimized condition in the relay capability estimation process. In addition, experiments conducted on a real network show that our proposed scheme can prevent the newly joining peer from downloading video data from peers with insufficient relay capability and maintain video quality close to normal in a P2PTV system while ensuring efficient traffic localization at the level of the Autonomous System (AS) network.

  • Seamless Mobility in ICN for Mobile Consumers with Mobile Producers

    Jairo LÓPEZ  Takuro SATO  

     
    PAPER-Network

      Pubricized:
    2017/03/29
      Vol:
    E100-B No:10
      Page(s):
    1827-1836

    In order to support seamless mobility in the Information-Centric Networking (ICN) Architecture we propose the Named-Node Network Architecture (3NA). 3NA introduces two independent namespaces to ICN, the 3N namespace used to uniquely identify nodes within a network and the Point of Attachment (PoA) namespace to identify a node's PoA to the network. The mappings between the two namespaces, along with all the necessary mechanisms to keep the mappings updated over time, are used when routing ICN packets to improve delay and the goodput when either the producer or the consumer are mobile. To support simultaneous producer and consumer mobility, we expand on the 3NA by adding a new Protocol Data Unit (PDU), the DU PDU. The DU PDU permits the encapsulation of ICN packets in a header that has source and destination name fields which belong to 3NA's 3N namespace. The new PDU permits seamless connectivity as long as 3NA's point of attachment signaling is strictly followed. We demonstrate the performance of the DU PDU against our previous defined communication methods and Named Data Networking's (NDN) Smart Flooding forwarding strategy using our open source nnnSIM module for the ns-3 framework. The new PDU outperforms all existing alternatives when the producer or both consumer and provider are mobile, obtaining overall lower mean network delay and higher median goodput.

  • Polarization-Reconfigurable Flat Transmitarray Based on Square Frame and Crossed Dipole Elements

    Yujie LIU  Yuehe GE  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/04/07
      Vol:
    E100-B No:10
      Page(s):
    1904-1910

    A novel element is proposed for manipulating two orthogonally-polarized electromagnetic waves, resulting in a polarization-reconfigurable flat transmitarray. This element consists of four identical metallic patterns, including a square frame loaded with short stubs and an internal crossed dipole, which are printed on the two sides of three identical flat dielectric slabs, with no air gap among them. With a linearly-polarized (LP) feeder, the flat transmitarray can transform the LP incident wave into a circular, horizontal or vertical polarization wave in a convenient way. By rotating the LP feeder so that the polarization angle is 0°, 45°, 90° or 135°, the waves of linear horizontal, right-handed circular, linear vertical or left-handed circular polarization can be obtained alternately. Simulations and experiments are conducted to validate the performance. The measured axial ratio bandwidths for RHCP and LHCP transmitarrays are about 7.1% and 5.1%, respectively, the 3dB gain bandwidths are 16.19% and 22.4%, and the peak gains are 25.56dBi and 24.2dBi, respectively.

  • 5G Distributed Massive MIMO with Ultra-High Density Antenna Deployment in Low SHF Bands

    Tatsuki OKUYAMA  Satoshi SUYAMA  Jun MASHINO  Yukihiko OKUMURA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/03/10
      Vol:
    E100-B No:10
      Page(s):
    1921-1927

    In order to tackle rapidly increasing traffic, dramatic performance enhancements in radio access technologies (RATs) are required for fifth-generation (5G) mobile communication system. In 5G, small/semi-macro cells using Massive MIMO (M-MIMO) with much wider bandwidth in higher frequency bands are overlaid on macro cell with existing frequency band. Moreover, high density deployment of small/semi-macro cell is expected to improve areal capacity. However, in low SHF band (below 6GHz), antenna array size of M-MIMO is large so that it cannot be installed on some environments. Therefore, to improve system throughput on various use cases in 5G, we have proposed distributed Massive MIMO (DM-MIMO). DM-MIMO coordinates lots of distributed transmission points (TPs) that are located in ultra-high density (UHD). Furthermore, DM-MIMO uses various numbers of antenna elements for each TP. In addition, DM-MIMO with UHD-TPs can create user-centric virtual cells corresponding to user mobility, and design of flexible antenna deployment for DM-MIMO is applicable to various use cases. Then, some key parameters such as the number of the distributed TPs, the number of antenna elements for each TP, and proper distance between TPs, should be determined. This paper presents such parameters for 5G DM-MIMO with flexible antenna deployment under fixed total transmission power and constant total number of antenna elements. Computer simulations show that DM-MIMO can achieve more than 1.9 times higher system throughput than an M-MIMO system using 128 antenna elements.

  • First Demonstration of Mode Selective Active Multimode Interferometer Laser Diode

    Bingzhou HONG  Takuya KITANO  Haisong JIANG  Akio TAJIMA  Kiichi HAMAMOTO  

     
    PAPER

      Vol:
    E100-C No:10
      Page(s):
    775-781

    We newly propose the first lateral mode selective active multimode interferometer laser diode. The design principle is to arrange identical propagation path of different lateral mode. Thanks to multimode waveguide structure, 0th mode and 1st order mode has individual propagation path within one device. Individual lasing of fundamental mode as well as first mode was confirmed successfully.

  • Evolution of Millimeter-Wave Multi-Antenna Systems in the IoT Era Open Access

    Kazuaki TAKAHASHI  Hidekuni YOMO  Takashi MATSUOKA  Junji SATO  Yoichi NAKAGAWA  Makoto YASUGI  Masataka IRIE  Naganori SHIRAKATA  Koji TAKINAMI  

     
    INVITED PAPER

      Vol:
    E100-C No:10
      Page(s):
    809-817

    In this paper, we present the roles played by millimeter-waves in the realization of an Internet of Things (IoT) society. Millimeter-waves are becoming essential frequency resources, enabling ultra-high-speed wireless networks supporting massive data traffic and high-resolution sensor devices. Multiple antenna technologies such as phased arrays, sector antennas, and MIMO signal processing are key technologies for putting these into practical use. In this paper, various examples of integration of multi-antenna systems are shown, as well as demonstration on 60GHz-band millimeter-wave wireless access and 79GHz-band high-resolution radar. We also propose applications to ITS for an IoT society, combining millimeter-wave wireless access and radar sensors, and discuss technical issues to be solved in the future.

  • Design of Multi-Way LC-Ladder Dividers with Multi-Band Operation

    Yosuke OKADA  Tadashi KAWAI  Akira ENOKIHARA  

     
    PAPER

      Vol:
    E100-C No:10
      Page(s):
    893-900

    In this paper, we propose a design method of compact multi-way Wilkinson power divider with a multiband operation for size reduction and band broadening. The proposed divider consists of multisection LC-ladder circuits in the division arms and isolation circuits between the output ports. To validate design procedures, we fabricated a trial divider at VHF band. The circuit layout of the trial divider was decided by using an electromagnetic simulator (Sonnet EM). Because the proposed divider consists of lumped element circuits, we can realize great miniaturization of a circuit area compared to that of the conventional Wilkinson power divider. The circuit size of the trial divider is 35 mm square. The measurement results for the trial divider by using a vector network analyzer indicates a relative bandwidth of about 60% under -17 dB reflection, flat power division within ±0.1 dB, and very low phase imbalances under 1.0 degree over the wide frequency range.

  • 600V 30A SiC IPM with Low Power Loss for Motor Drive Applications

    Qing HUA  Gongtang WANG  Jianhui SUN  Chunxing WANG  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Vol:
    E100-C No:10
      Page(s):
    938-941

    This paper presents a SiC intelligent power module (IPM) which features low power loss. It is designed specifically for high performance low power motor drive applications including fans, refrigerator and air conditioner compressor drives, where energy efficiency is a major concern. The IPM utilizes 600 V planar-type SiC metal oxide semiconductor field effect transistors (MOSFETs) as the power switching devices to deliver immensely low conduction and switching losses. Moreover, 600 V SiC schottky barrier diodes (SBDs) are adopted as the freewheeling diodes. In comparison with conventional silicon fast recovery diodes (FRDs), SiC SBDs exhibit practically no reverse recovery loss and can further diminish the power loss of the IPM. Besides, combined with these SiC power devices the proposed IPM is able to operate at a higher temperature up to 175°C while maintaining very low leakage current. Experimental results indicate that the power loss of the proposed IPM is between 2.2∼17 W at different compressor frequencies from 10 to 70 Hz, which can realize up to 32%∼53% improvement when compared to state-of-the-art conventional Si-based insulated gate bipolar transistor (IGBT) IPM.

  • Doc-Trace: Tracing Secret Documents in Cloud Computing via Steganographic Marking

    Sang-Hoon CHOI  Joobeom YUN  Ki-Woong PARK  

     
    LETTER

      Pubricized:
    2017/07/21
      Vol:
    E100-D No:10
      Page(s):
    2373-2376

    The secret document leakage incidents have raised awareness for the need to better security mechanisms. A leading cause of the incidents has been due to accidental disclosure through via removable storage devices. As a remedy to the issue, many organizations have been employing private cloud platform or virtual desktop infrastructure (VDI) to prevent the leakage of the secret documents. In spite of the various security benefits of cloud-based infrastructure, there are still challenges to prevent the secret document leakage incidents. In this paper, we present a novel scheme, called Doc-Trace, to provide an end-to-end traceability for the secret documents by inserting steganographic pattern into unused regions of the secret documents on private cloud and VDI platforms. We devise a computationally efficient storage scanning mechanism for providing end-to-end traceability for the storage scanning can be performed in an event-driven manner since a steganographic mark are encoded into a well-regulated offset address of the storage, which decrease the computation overhead drastically. To evaluate the feasibility of the proposed scheme, this work has been undertaken on a real cloud platform based on OpenStack.

  • Protecting Critical Files Using Target-Based Virtual Machine Introspection Approach

    Dongyang ZHAN  Lin YE  Binxing FANG  Xiaojiang DU  Zhikai XU  

     
    PAPER-Operating system and network Security

      Pubricized:
    2017/07/21
      Vol:
    E100-D No:10
      Page(s):
    2307-2318

    Protecting critical files in operating system is very important to system security. With the increasing adoption of Virtual Machine Introspection (VMI), designing VMI-based monitoring tools become a preferential choice with promising features, such as isolation, stealthiness and quick recovery from crash. However, these tools inevitably introduce high overhead due to their operation-based characteristic. Specifically, they need to intercept some file operations to monitor critical files once the operations are executed, regardless of whether the files are critical or not. It is known that file operation is high-frequency, so operation-based methods often result in performance degradation seriously. Thus, in this paper we present CFWatcher, a target-based real-time monitoring solution to protect critical files by leveraging VMI techniques. As a target-based scheme, CFWatcher constraints the monitoring into the operations that are accessing target files defined by users. Consequently, the overhead depends on the frequency of target files being accessed instead of the whole filesystem, which dramatically reduces the overhead. To validate our solution, a prototype system is built on Xen with full virtualization, which not only is able to monitor both Linux and Windows virtual machines, but also can take actions to prevent unauthorized access according to predefined policies. Through extensive evaluations, the experimental results demonstrate that the overhead introduced by CFWatcher is acceptable. Especially, the overhead is very low in the case of a few target files.

  • Attribute Revocable Multi-Authority Attribute-Based Encryption with Forward Secrecy for Cloud Storage

    Kenta NOMURA  Masami MOHRI  Yoshiaki SHIRAISHI  Masakatu MORII  

     
    PAPER

      Pubricized:
    2017/07/21
      Vol:
    E100-D No:10
      Page(s):
    2420-2431

    Internet of Things (IoT) has been widely applied in various fields. IoT data can also be put to cloud, but there are still concerns regarding security and privacy. Ciphertext-Policy Attribute-Based Encryption (CP-ABE) is attracted attention in cloud storage as a suitable encryption scheme for confidential data share and transmission. In CP-ABE, the secret key of a user is associated with a set of attributes; when attributes satisfy the access structure, the ciphertext is able to be decrypted. It is necessary that multiple authorities issue and manage secret keys independently. Authorities that generate the secret key can be regarded as managing the attributes of a user in CP-ABE. CP-ABE schemes that have multiple authorities have been proposed. The other hand, it should consider that a user's operation at the terminals is not necessary when a user drop an attribute and key is updated and the design of the communication system is a simple. In this paper, we propose CP-ABE scheme that have multiple key authorities and can revoke attribute immediately with no updating user's secret key for attribute revocation. In addition, the length of ciphertext is fixed. The proposed scheme is IND-CPA secure in DBDH assumption under the standard model. We compare the proposed scheme and the other CP-ABE schemes and show that the proposed scheme is more suitable for cloud storage.

  • Delivering CRL with Low Bit Rate Network Coded Communication for ITS

    Yoshiaki SHIRAISHI  Masanori HIROTOMO  Masami MOHRI  Taisuke YAMAMOTO  

     
    PAPER

      Pubricized:
    2017/07/21
      Vol:
    E100-D No:10
      Page(s):
    2440-2448

    The application of Intelligent Transport Systems (ITS) transmits data with road-to-vehicle communication (RVC) and inter-vehicle communication (IVC). Digital signature is essential to provide security for RVC and IVC. The public key certificate is used to verify that a public key belongs to an individual prover such as user or terminal. A certificate revocation list (CRL) is used for verifying validity of the public key certificate. A certificate authority (CA) publishes a CRL and distributes it to vehicles. CRL distribution traffic disturbs ITS application traffic because of sharing wireless channel between them. To distribute it on low bit rate will help to ease the disturbance. Although multiplex transmitting is effective in reliable communication, a duplication of received packets is waste of bandwidth as a consequence. This paper proposes a CRL distribution scheme based on random network coding which can reduce duplicate packets. The simulation results show that the number of duplicate packets of the proposed scheme is less than that of a simple error correction (EC)-based scheme and the proposed one can distribute CRL to more vehicles than EC-based ones.

  • Smart Bottle Cap

    Arinobu NIIJIMA  Takahiro KUSABUKA  Soichiro UCHIDA  Tomoki WATANABE  Tomohiro YAMADA  

     
    LETTER

      Pubricized:
    2017/07/21
      Vol:
    E100-D No:10
      Page(s):
    2462-2464

    We present a new simple Internet of Things (IoT) device that we call “Smart Bottle Cap”, which enables a standard bottle to become a user-controllable liquid pouring system. It consists of a mini vacuum pump to start the liquid flowing, a microcontroller to control the liquid flow, a BLE module to connect it to a smartphone, an accelerometer to detect the tilt angle of the bottle, an LED for drawing the attention of users, and a 3.7 V LiPo battery. The device's novel point is that a flow control mechanism built into a standard bottle cap makes the system suitable for general use and enables it to be easily extended.

5961-5980hit(42807hit)