The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

1301-1320hit(42807hit)

  • Experimental Study on Synchronization of Van der Pol Oscillator Circuit by Noise Sounds

    Taiki HAYASHI  Kazuyoshi ISHIMURA  Isao T. TOKUDA  

     
    PAPER-Nonlinear Problems

      Pubricized:
    2022/05/16
      Vol:
    E105-A No:11
      Page(s):
    1486-1492

    Towards realization of a noise-induced synchronization in a natural environment, an experimental study is carried out using the Van der Pol oscillator circuit. We focus on acoustic sounds as a potential source of noise that may exist in nature. To mimic such a natural environment, white noise sounds were generated from a loud speaker and recorded into microphone signals. These signals were then injected into the oscillator circuits. We show that the oscillator circuits spontaneously give rise to synchronized dynamics when the microphone signals are highly correlated with each other. As the correlation among the input microphone signals is decreased, the level of synchrony is lowered monotonously, implying that the input correlation is the key determinant for the noise-induced synchronization. Our study provides an experimental basis for synchronizing clocks in distributed sensor networks as well as other engineering devices in natural environment.

  • Generic Construction of 1-out-of-n Oblivious Signatures

    Yu ZHOU  Shengli LIU  Shuai HAN  

     
    INVITED PAPER

      Pubricized:
    2022/07/15
      Vol:
    E105-D No:11
      Page(s):
    1836-1844

    In a 1-out-of-n oblivious signature scheme, a user provides a set of messages to a signer for signatures but he/she can only obtain a valid signature for a specific message chosen from the message set. There are two security requirements for 1-out-of-n oblivious signature. The first is ambiguity, which requires that the signer is not aware which message among the set is signed. The other one is unforgeability which requires that the user is not able to derive any other valid signature for any messages beyond the one that he/she has chosen. In this paper, we provide a generic construction of 1-out-of-n oblivious signature. Our generic construction consists of two building blocks, a commitment scheme and a standard signature scheme. Our construction is round efficient since it only asks one interaction (i.e., two rounds) between the user and signer. Meanwhile, in our construction, the ambiguity of the 1-out-of-n oblivious signature scheme is based on the hiding property of the underlying commitment, while the unforgeability is based on the binding property of the underlying commitment scheme and the unforgeability of the underlying signature scheme. Moreover, our construction can also enjoy strong unforgeability as long as the underlying building blocks have strong binding property and strong unforgeability respectively. Given the fact that commitment and digital signature are well-studied topics in cryptography and numerous concrete schemes have been proposed in the standard model, our generic construction immediately yields a bunch of instantiations in the standard model based on well-known assumptions, including not only traditional assumptions like Decision Diffie-Hellman (DDH), Decision Composite Residue (DCR), etc., but also some post-quantum assumption like Learning with Errors (LWE). As far as we know, our construction admits the first 1-out-of-n oblivious signature schemes based on the standard model.

  • Hardware Implementation of Euclidean Projection Module Based on Simplified LSA for ADMM Decoding

    Yujin ZHENG  Junwei ZHANG  Yan LIN  Qinglin ZHANG  Qiaoqiao XIA  

     
    LETTER-Coding Theory

      Pubricized:
    2022/05/20
      Vol:
    E105-A No:11
      Page(s):
    1508-1512

    The Euclidean projection operation is the most complex and time-consuming of the alternating direction method of multipliers (ADMM) decoding algorithms, resulting in a large number of resources when deployed on hardware platforms. We propose a simplified line segment projection algorithm (SLSA) and present the hardware design and the quantization scheme of the SLSA. In simulation results, the proposed SLSA module has a better performance than the original algorithm with the same fixed bitwidths due to the centrosymmetric structure of SLSA. Furthermore, the proposed SLSA module with a simpler structure without hypercube projection can reduce time consuming by up to 72.2% and reduce hardware resource usage by more than 87% compared to other Euclidean projection modules in the experiments.

  • Toward Selective Membership Inference Attack against Deep Learning Model

    Hyun KWON  Yongchul KIM  

     
    LETTER

      Pubricized:
    2022/07/26
      Vol:
    E105-D No:11
      Page(s):
    1911-1915

    In this paper, we propose a selective membership inference attack method that determines whether certain data corresponding to a specific class are being used as training data for a machine learning model or not. By using the proposed method, membership or non-membership can be inferred by generating a decision model from the prediction of the inference models and training the confidence values for the data corresponding to the selected class. We used MNIST as an experimental dataset and Tensorflow as a machine learning library. Experimental results show that the proposed method has a 92.4% success rate with 5 inference models for data corresponding to a specific class.

  • Intrinsic Representation Mining for Zero-Shot Slot Filling

    Sixia LI  Shogo OKADA  Jianwu DANG  

     
    PAPER-Natural Language Processing

      Pubricized:
    2022/08/19
      Vol:
    E105-D No:11
      Page(s):
    1947-1956

    Zero-shot slot filling is a domain adaptation approach to handle unseen slots in new domains without training instances. Previous studies implemented zero-shot slot filling by predicting both slot entities and slot types. Because of the lack of knowledge about new domains, the existing methods often fail to predict slot entities for new domains as well as cannot effectively predict unseen slot types even when slot entities are correctly identified. Moreover, for some seen slot types, those methods may suffer from the domain shift problem, because the unseen context in new domains may change the explanations of the slots. In this study, we propose intrinsic representations to alleviate the domain shift problems above. Specifically, we propose a multi-relation-based representation to capture both the general and specific characteristics of slot entities, and an ontology-based representation to provide complementary knowledge on the relationships between slots and values across domains, for handling both unseen slot types and unseen contexts. We constructed a two-step pipeline model using the proposed representations to solve the domain shift problem. Experimental results in terms of the F1 score on three large datasets—Snips, SGD, and MultiWOZ 2.3—showed that our model outperformed state-of-the-art baselines by 29.62, 10.38, and 3.89, respectively. The detailed analysis with the average slot F1 score showed that our model improved the prediction by 25.82 for unseen slot types and by 10.51 for seen slot types. The results demonstrated that the proposed intrinsic representations can effectively alleviate the domain shift problem for both unseen slot types and seen slot types with unseen contexts.

  • Communication-Efficient Federated Indoor Localization with Layerwise Swapping Training-FedAvg

    Jinjie LIANG  Zhenyu LIU  Zhiheng ZHOU  Yan XU  

     
    PAPER-Mobile Information Network and Personal Communications

      Pubricized:
    2022/05/11
      Vol:
    E105-A No:11
      Page(s):
    1493-1502

    Federated learning is a promising strategy for indoor localization that can reduce the labor cost of constructing a fingerprint dataset in a distributed training manner without privacy disclosure. However, the traffic generated during the whole training process of federated learning is a burden on the up-and-down link, which leads to huge energy consumption for mobile devices. Moreover, the non-independent and identically distributed (Non-IID) problem impairs the global localization performance during the federated learning. This paper proposes a communication-efficient FedAvg method for federated indoor localization which is improved by the layerwise asynchronous aggregation strategy and layerwise swapping training strategy. Energy efficiency can be improved by performing asynchronous aggregation between the model layers to reduce the traffic cost in the training process. Moreover, the impact of the Non-IID problem on the localization performance can be mitigated by performing swapping training on the deep layers. Extensive experimental results show that the proposed methods reduce communication traffic and improve energy efficiency significantly while mitigating the impact of the Non-IID problem on the precision of localization.

  • Loosening Bolts Detection of Bogie Box in Metro Vehicles Based on Deep Learning

    Weiwei QI  Shubin ZHENG  Liming LI  Zhenglong YANG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2022/07/28
      Vol:
    E105-D No:11
      Page(s):
    1990-1993

    Bolts in the bogie box of metro vehicles are fasteners which are significant for bogie box structure. Effective loosening bolts detection in early stage can avoid the bolt loss and accident occurrence. Recently, detection methods based on machine vision are developed for bolt loosening. But traditional image processing and machine learning methods have high missed rate and false rate for bolts detection due to the small size and complex background. To address this problem, a loosening bolts defection method based on deep learning is proposed. The proposed method cascades two stages in a coarse-to-fine manner, including location stage based on the Single Shot Multibox Detector (SSD) and the improved SSD sequentially localizing the bogie box and bolts and a semantic segmentation stage with the U-shaped Network (U-Net) to detect the looseness of the bolts. The accuracy and effectiveness of the proposed method are verified with images captured from the Shanghai Metro Line 9. The results show that the proposed method has a higher accuracy in detecting the bolts loosening, which can guarantee the stable operation of the metro vehicles.

  • Workload-Driven Analysis on the Performance Characteristics of GPU-Accelerated DBMSes

    Junyoung AN  Young-Kyoon SUH  Byungchul TAK  

     
    LETTER-Data Engineering, Web Information Systems

      Vol:
    E105-D No:11
      Page(s):
    1984-1989

    This letter conducts an in-depth empirical analysis of the influence of various query characteristics on the performance of modern GPU DBMSes. Our analysis reveals that, although they can efficiently process concurrent queries, the GPU DBMSes we consider still should address various performance concerns including n-way joins, aggregates, and selective scans.

  • Distributed Filter Using ADMM for Optimal Estimation Over Wireless Sensor Network

    Ryosuke ADACHI  Yuji WAKASA  

     
    PAPER

      Pubricized:
    2022/04/12
      Vol:
    E105-A No:11
      Page(s):
    1458-1465

    This paper addresses a distributed filter over wireless sensor networks for optimal estimation. A distributed filter over the networks allows all local estimators to calculate optimal estimates with a scalable communication cost. Outputs of the distributed filter for the optimal estimation can be denoted as a solution of a consensus optimization problem. Thus, the distributed filter is designed based on distributed alternating direction method of multipliers (ADMM). The remarkable points of the distributed filter based on the ADMM are that: the distributed filter has a faster convergence rate than distributed subgradient projection algorithm; the weight, which is optimized by a semidefinite programming problem, accelerates the convergence rate of the proposed method.

  • Doppler Resilient Waveforms Design in MIMO Radar via a Generalized Null Space Method

    Li SHEN  Jiahuan WANG  Wei GUO  Rong LUO  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2022/05/23
      Vol:
    E105-A No:11
      Page(s):
    1503-1507

    To mitigate the interference caused by range sidelobes in multiple-input multiple-output (MIMO) radar, we propose a new method to construct Doppler resilient complementary waveforms from complete complementary code (CCC). By jointly designing the transmit pulse train and the receive pulse weights, the range sidelobes can vanish within a specified Doppler interval. In addition, the output signal-to-noise ratio (SNR) is maximized subject to the Doppler resilience constraint. Numerical results show that the designed waveforms have better Doppler resilience than the previous works.

  • Proposals and Evaluations of Robotic Attendance at On-Site Network Maintenance Works Open Access

    Takayuki WARABINO  Yusuke SUZUKI  Tomohiro OTANI  

     
    PAPER

      Pubricized:
    2022/05/27
      Vol:
    E105-B No:11
      Page(s):
    1299-1308

    While the introduction of softwarelization technologies such as software-defined networking and network function virtualization transfers the main focus of network management from hardware to software, network operators still have to deal with various and numerous network and computing equipment located in network centers. Toward fully automated network management, we believe that a robotic approach will be essential, meaning that physical robots will handle network-facility management works on behalf of humans. This paper focuses on robotic assistance for on-site network maintenance works. Currently, for many network operators, some network maintenance works (e.g., hardware check, hardware installation/replacement, high-impact update of software, etc.) are outsourced to computing and network vendors. Attendance (witness work) at the on-site vendor's works is one of the major tasks of network operators. Network operators confirm the work progress for human error prevention and safety improvement. In order to reduce the burden of this, we propose three essential works of robots, namely delegated attendance at on-site meetings, progress check by periodical patrol, and remote monitoring, which support the various forms of attendance. The paper presents our implementation of enabling these forms of support, and reports the results of experiments conducted in a commercial network center.

  • A KPI Anomaly Detection Method Based on Fast Clustering

    Yun WU  Yu SHI  Jieming YANG  Lishan BAO  Chunzhe LI  

     
    PAPER

      Pubricized:
    2022/05/27
      Vol:
    E105-B No:11
      Page(s):
    1309-1317

    In the Artificial Intelligence for IT Operations scenarios, KPI (Key Performance Indicator) is a very important operation and maintenance monitoring indicator, and research on KPI anomaly detection has also become a hot spot in recent years. Aiming at the problems of low detection efficiency and insufficient representation learning of existing methods, this paper proposes a fast clustering-based KPI anomaly detection method HCE-DWL. This paper firstly adopts the combination of hierarchical agglomerative clustering (HAC) and deep assignment based on CNN-Embedding (CE) to perform cluster analysis (that is HCE) on KPI data, so as to improve the clustering efficiency of KPI data, and then separately the centroid of each KPI cluster and its Transformed Outlier Scores (TOS) are given weights, and finally they are put into the LightGBM model for detection (the Double Weight LightGBM model, referred to as DWL). Through comparative experimental analysis, it is proved that the algorithm can effectively improve the efficiency and accuracy of KPI anomaly detection.

  • Cost-Effective Service Chain Construction with VNF Sharing Model Based on Finite Capacity Queue

    Daisuke AMAYA  Takuji TACHIBANA  

     
    PAPER

      Pubricized:
    2022/05/27
      Vol:
    E105-B No:11
      Page(s):
    1361-1371

    Service chaining is attracting attention as a promising technology for providing a variety of network services by applying virtual network functions (VNFs) that can be instantiated on commercial off-the-shelf servers. The data transmission for each service chain has to satisfy the quality of service (QoS) requirements in terms of the loss probability and transmission delay, and hence the amount of resources for each VNF is expected to be sufficient for satisfying the QoS. However, the increase in the amount of VNF resources results in a high cost for improving the QoS. To reduce the cost of utilizing a VNF, sharing VNF instances through multiple service chains is an effective approach. However, the number of packets arriving at the VNF instance is increased, resulting in a degradation of the QoS. It is therefore important to select VNF instances shared by multiple service chains and to determine the amount of resources for the selected VNFs. In this paper, we propose a cost-effective service chain construction with a VNF sharing model. In the proposed method, each VNF is modeled as an M/M/1/K queueing model to evaluate the relationship between the amount of resources and the loss probability. The proposed method determines the VNF sharing, the VNF placement, the amount of resources for each VNF, and the transmission route of each service chain. For the optimization problem, these are applied according to our proposed heuristic algorithm. We evaluate the performance of the proposed method through a simulation. From the numerical examples, we show the effectiveness of the proposed method under certain network topologies.

  • Research on Stability of MMC-Based Medium Voltage DC Bus on Ships Based on Lyapunov Method Open Access

    Liang FANG  Xiaoyan XU  Tomasz TARASIUK  

     
    PAPER

      Pubricized:
    2022/05/09
      Vol:
    E105-C No:11
      Page(s):
    675-683

    Modular multilevel converters (MMCs) are an emerging and promising option for medium voltage direct current (MVDC) of all- electric ships. In order to improve the stability of the MVDC transmission system for ships, this paper presents a new control inputs-based Lyapunov strategy based on feedback linearization. Firstly, a set of dynamics equations is proposed based on separating the dynamics of AC-part currents and MMCs circulating currents. The new control inputs can be obtained by the use of feedback linearization theory applied to the dynamic equations. To complete the dynamic parts of the new control inputs from the viewpoint of MVDC system stability, the Lyapunov theory is designed some compensators to demonstrate the effects of the new control inputs on the MMCs state variable errors and its dynamic. In addition, the carrier phase shifted modulation strategy is used because of applying the few number of converter modules to the MVDC system for ships. Moreover, relying on the proposed control strategy, a simulation model is built in MATLAB/SIMULINK software, where simulation results are utilized to verify the validity of proposed control strategy in the MMC-based MVDC system for ships.

  • An SDN-Based Moving Target Defense as a Countermeasure to Prevent Network Scans Open Access

    Shoya CHIBA  Luis GUILLEN  Satoru IZUMI  Toru ABE  Takuo SUGANUMA  

     
    PAPER

      Pubricized:
    2022/05/27
      Vol:
    E105-B No:11
      Page(s):
    1400-1407

    This paper proposes a Software-Defined Network (SDN)-based Moving Target Defense (MTD) to protect the network from potential scans in a compromised network. As a unique feature, contrary to traditional MTDs, the proposed MTD can work alongside other tools and countermeasures already deployed in the network (e.g., Intrusion Protection and Detection Systems) without affecting its behavior. Through extensive evaluation, we showed the effectiveness of the proposed mechanism compared to existing solutions in preventing scans of different rates without affecting the network and controller performance.

  • Block-Based Scheduling Algorithm for Layered Decoding of Block LDPC Codes

    Sangjoon PARK  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2022/04/28
      Vol:
    E105-B No:11
      Page(s):
    1408-1413

    This paper proposes an efficient scheduling algorithm for the layered decoding of block low-density parity-check (LDPC) codes. To efficiently configure check node-based scheduling groups, the proposed algorithm utilizes the base matrix of the block LDPC code for a block-by-block scheduling group configuration; i.e., the proposed algorithm generates a scheduling group of check nodes, satisfying the weight condition of the layered decoding, which is performed in block units (including several check nodes). Therefore, unlike the conventional scheduling algorithms performed in node units, the proposed algorithm can efficiently generate scheduling groups for layered decoding at low computational complexity and memory requirements. In addition, to accelerate the decoding convergence speed, check nodes are allocated in each scheduling group such that messages from check nodes up to the current group are delivered as evenly as possible to bit nodes. Simulation results confirm that the proposed algorithm can accelerate decoding convergence compared to other block-based scheduling algorithms for layered decoding of block LDPC codes.

  • Voronoi-Based UAV Flight Method for Non-Uniform User Distribution in Delay-Tolerant Aerial Networks

    Hiroyuki ASANO  Hiraku OKADA  Chedlia BEN NAILA  Masaaki KATAYAMA  

     
    PAPER-Network

      Pubricized:
    2022/05/11
      Vol:
    E105-B No:11
      Page(s):
    1414-1423

    This paper considers an emergency communication system controlling multiple unmanned aerial vehicles (UAVs) in the sky over a large-scale disaster-affected area. This system is based on delay-tolerant networking, and information from ground users is relayed by the UAVs through wireless transmission and the movement of UAVs in a store-and-forward manner. Each UAV moves autonomously according to a predetermined flight method, which uses the positions of other UAVs through communication. In this paper, we propose a new method for UAV flight considering the non-uniformity of user distributions. The method is based on the Voronoi cell using the predicted locations of other UAVs. We evaluate the performance of the proposed method through computer simulations with a non-uniform user distribution generated by a general cluster point process. The simulation results demonstrate the effectiveness of the proposed method.

  • Effectiveness of Digital Twin Computing on Path Tracking Control of Unmanned Vehicle by Cloud Server

    Yudai YOSHIMOTO  Taro WATANABE  Ryohei NAKAMURA  Hisaya HADAMA  

     
    PAPER-Internet

      Pubricized:
    2022/05/11
      Vol:
    E105-B No:11
      Page(s):
    1424-1433

    With the rapid deployment of the Internet of Things, where various devices are connected to communication networks, remote driving applications for Unmanned Vehicles (UVs) are attracting attention. In addition to automobiles, autonomous driving technology is expected to be applied to various types of equipment, such as small vehicles equipped with surveillance cameras to monitor building internally and externally, autonomous vehicles that deliver office supplies, and wheelchairs. When a UV is remotely controlled, the control accuracy deteriorates due to transmission delay and jitter. The accuracy must be kept high to realize UV control system by a cloud server. In this study, we investigate the effectiveness of Digital Twin Computing (DTC) for path tracking control of a UV. We show the results of simulations that use transmission delay values measured on the Internet with some cloud servers. Through the results, we quantitatively clarify that application of DTC improves control accuracy on path tracking control. We also clarify that application of jitter buffer, which absorbs the transmission delay fluctuation, can further improve the accuracy.

  • A Distortionless Anti-Jamming Method Based on STAP for GNSS Receiver

    Fankun ZENG  Xin QIU  Jinhai LI  Haiyang LIU  Xiaoran CHEN  

     
    PAPER-Navigation, Guidance and Control Systems

      Pubricized:
    2022/04/26
      Vol:
    E105-B No:11
      Page(s):
    1467-1476

    Global Navigation Satellite System (GNSS) receivers often realize anti-jamming capabilities by combining array antennas with space-time adaptive processing (STAP). Unfortunately, in suppressing the interference, basic STAP degrades the GNSS signal. For one thing, additional carrier phase errors and code phase errors to the GNSS signal are introduced; for another, the shape of the cross-correlation function (CCF) will be distorted by STAP, introducing tracking errors when the receiver is in tracking mode. Both of them will eventually cause additional Pseudo-Range (PR) bias, and these problems prevent STAP from being directly applied to high-precision satellite navigation receivers. The paper proposes a novel anti-jamming method based on STAP that solves the above problems. First, the proposed method constructs a symmetric STAP by constraining the STAP coefficients. Subsequently, with the information of the steering vector, a compensation FIR filter is cascaded after the symmetric STAP. This approach ensures that the proposed method introduces only a fixed offset to the code phase and carrier phase, and the order of the STAP completely determines the offset, which can be compensated during PR measurements. Meanwhile, the proposed method maintains the symmetry of the CCF, and the receiver can accurately track the carrier phase and code phase in tracking mode. The effectiveness of the proposed method is validated through simulations, which suggest that, in the worst case, our method does not increase carrier and code phase errors and tracking error at the expense of only a 2.86dB drop in interference suppression performance.

  • Secondary Ripple Suppression Strategy for a Single-Phase PWM Rectifier Based on Constant Frequency Current Predictive Control

    Hailan ZHOU  Longyun KANG  Xinwei DUAN  Ming ZHAO  

     
    PAPER

      Pubricized:
    2022/03/30
      Vol:
    E105-C No:11
      Page(s):
    667-674

    In the conventional single-phase PWM rectifier, the sinusoidal fluctuating current and voltage on the grid side will generate power ripple with a doubled grid frequency which leads to a secondary ripple in the DC output voltage, and the switching frequency of the conventional model predictive control strategy is not fixed. In order to solve the above two problems, a control strategy for suppressing the secondary ripple based on the three-vector fixed-frequency model predictive current control is proposed. Taking the capacitive energy storage type single-phase PWM rectifier as the research object, the principle of its active filtering is analyzed and a model predictive control strategy is proposed. Simulation and experimental results show that the proposed strategy can significantly reduce the secondary ripple of the DC output voltage, reduce the harmonic content of the input current, and achieve a constant switching frequency.

1301-1320hit(42807hit)