The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

1361-1380hit(42807hit)

  • Spy in Your Eye: Spycam Attack via Open-Sided Mobile VR Device

    Jiyeon LEE  Kilho LEE  

     
    LETTER-Human-computer Interaction

      Pubricized:
    2022/07/22
      Vol:
    E105-D No:10
      Page(s):
    1817-1820

    Privacy violations via spy cameras are becoming increasingly serious. With the recent advent of various smart home IoT devices, such as smart TVs and robot vacuum cleaners, spycam attacks that steal users' information are being carried out in more unpredictable ways. In this paper, we introduce a new spycam attack on a mobile WebVR environment. It is performed by a web attacker who maliciously accesses the back-facing cameras of victims' mobile devices while they are browsing the attacker's WebVR site. This has the power to allow the attacker to capture victims' surroundings even at the desired field of view through sophisticated content placement in VR scenes, resulting in serious privacy breaches for mobile VR users. In this letter, we introduce a new threat facing mobile VR and show that it practically works with major browsers in a stealthy manner.

  • Antenna Array Self-Calibration Algorithm with Location Errors for MUSIC

    Jian BAI  Lin LIU  Xiaoyang ZHANG  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2022/04/20
      Vol:
    E105-A No:10
      Page(s):
    1421-1424

    The characteristics of antenna array, like sensor location, gain and phase response are rarely perfectly known in realistic situations. Location errors usually have a serious impact on the DOA (direction of arrival) estimation. In this paper, a novel array location calibration method of MUSIC (multiple signal classification) algorithm based on the virtual interpolated array is proposed. First, the paper introduces the antenna array positioning scheme. Then, the self-calibration algorithm of FIR-Winner filter based on virtual interpolation array is derived, and its application restriction are also analyzed. Finally, by simulating the different location errors of antenna array, the effectiveness of the proposed method is validated.

  • Evaluation and Comparison of Integer Programming Solvers for Hard Real-Time Scheduling

    Ana GUASQUE  Patricia BALBASTRE  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2022/07/21
      Vol:
    E105-D No:10
      Page(s):
    1726-1733

    In order to obtain a feasible schedule of a hard real-time system, heuristic based techniques are the solution of choice. In the last few years, optimization solvers have gained attention from research communities due to their capability of handling large number of constraints. Recently, some works have used integer linear programming (ILP) for solving mono processor scheduling of real-time systems. In fact, ILP is commonly used for static scheduling of multiprocessor systems. However, two main solvers are used to solve the problem indistinctly. But, which one is the best for obtaining a schedulable system for hard real-time systems? This paper makes a comparison of two well-known optimization software packages (CPLEX and GUROBI) for the problem of finding a feasible schedule on monoprocessor hard real-time systems.

  • A Tutorial and Review of Automobile Direct ToF LiDAR SoCs: Evolution of Next-Generation LiDARs Open Access

    Kentaro YOSHIOKA  

     
    INVITED PAPER

      Pubricized:
    2022/04/11
      Vol:
    E105-C No:10
      Page(s):
    534-543

    LiDAR is a distance sensor that plays a key role in the realization of advanced driver assistance systems (ADAS). In this paper, we present a tutorial and review of automotive direct time of flight (dToF) LiDAR from the aspect of circuit systems. We discuss the breakthrough in ADAS LiDARs through comparison with the first-generation LiDAR systems, which were conventionally high-cost and had an immature performance. We define current high-performance and low-cost LiDARs as next-generation LiDAR systems, which have significantly improved the cost and performance by integrating the photodetector, the readout circuit, and the signal processing unit into a single SoC. This paper targets reader who is new to ADAS LiDARs and will cover the basic principles of LiDAR, also comparing with range methods other than dToF. In addition, we discuss the development of this area through the latest research examples such as the 2-chip approach, 2D SPAD array, and 3D integrated LiDARs.

  • Design and Experimental Verification of a 2.1nW 0.018mm2 Slope ADC-Based Supply Voltage Monitor for Biofuel-Cell-Powered Supply-Sensing Systems in 180-nm CMOS

    Guowei CHEN  Xujiaming CHEN  Kiichi NIITSU  

     
    BRIEF PAPER

      Pubricized:
    2022/03/25
      Vol:
    E105-C No:10
      Page(s):
    565-570

    This brief presents a slope analog-digital converter (ADC)-based supply voltage monitor (SVM) for biofuel-cell-powered supply-sensing systems operating in a supply voltage range of 0.18-0.35V. The proposed SVM is designed to utilize the output of energy harvester extracting power from biological reactions, realizing energy-autonomous sensor interfaces. A burst pulse generator uses a dynamic leakage suppression logic oscillator to generate a stable clock signal under the sub-threshold region for pulse counting. A slope-based voltage-to-time converter is employed to generate a pulse width proportional to the supply voltage with high linearity. The test chip of the proposed SVM is implemented in 180-nm CMOS technology with an active area of 0.018mm2. It consumes 2.1nW at 0.3V and achieves a conversion time of 117-673ms at 0.18-0.35V with a nonlinearity error of -5.5/+8.3mV, achieving an energy-efficient biosensing frontend.

  • MFSFET with 5nm Thick Ferroelectric Nondoped HfO2 Gate Insulator Utilizing Low Power Sputtering for Pt Gate Electrode Deposition

    Joong-Won SHIN  Masakazu TANUMA  Shun-ichiro OHMI  

     
    PAPER

      Pubricized:
    2022/06/27
      Vol:
    E105-C No:10
      Page(s):
    578-583

    In this research, we investigated the metal-ferroelectric-semiconductor field-effect transistors (MFSFETs) with 5nm thick nondoped HfO2 gate insulator by decreasing the sputtering power for Pt gate electrode deposition. The leakage current was effectively reduced to 2.6×10-8A/cm2 at the voltage of -1.5V by the sputtering power of 40W for Pt electrode deposition. Furthermore, the memory window (MW) of 0.53V and retention time over 10 years were realized.

  • Admittance Spectroscopy Up to 67 GHz in InGaAs/InAlAs Triple-Barrier Resonant Tunneling Diodes

    Kotaro AIKAWA  Michihiko SUHARA  Takumi KIMURA  Junki WAKAYAMA  Takeshi MAKINO  Katsuhiro USUI  Kiyoto ASAKAWA  Kouichi AKAHANE  Issei WATANABE  

     
    BRIEF PAPER

      Pubricized:
    2022/06/30
      Vol:
    E105-C No:10
      Page(s):
    622-626

    S-parameters of InGaAs/InAlAs triple-barrier resonant tunneling diodes (TBRTDs) were measured up to 67 GHz with various mesa areas and various bias voltages. Admittance data of bare TBRTDs are deembedded and evaluated by getting rid of parasitic components with help of electromagnetic simulations for particular fabricated device structures. Admittance spectroscopy up to 67 GHz is applied for bare TBRTDs for the first time and a Kramers-Kronig relation with Lorentzian function is found to be a consistent model for the admittance especially in cases of low bias conditions. Relaxation time included in the Lorentzian function are tentatively evaluated as the order of several pico second.

  • Frank-Wolfe for Sign-Constrained Support Vector Machines

    Kenya TAJIMA  Takahiko HENMI  Tsuyoshi KATO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/06/27
      Vol:
    E105-D No:10
      Page(s):
    1734-1742

    Domain knowledge is useful to improve the generalization performance of learning machines. Sign constraints are a handy representation to combine domain knowledge with learning machine. In this paper, we consider constraining the signs of the weight coefficients in learning the linear support vector machine, and develop an optimization algorithm for minimizing the empirical risk under the sign constraints. The algorithm is based on the Frank-Wolfe method that also converges sublinearly and possesses a clear termination criterion. We show that each iteration of the Frank-Wolfe also requires O(nd+d2) computational cost. Furthermore, we derive the explicit expression for the minimal iteration number to ensure an ε-accurate solution by analyzing the curvature of the objective function. Finally, we empirically demonstrate that the sign constraints are a promising technique when similarities to the training examples compose the feature vector.

  • Compressed Sensing EEG Measurement Technique with Normally Distributed Sampling Series

    Yuki OKABE  Daisuke KANEMOTO  Osamu MAIDA  Tetsuya HIROSE  

     
    LETTER-Measurement Technology

      Pubricized:
    2022/04/22
      Vol:
    E105-A No:10
      Page(s):
    1429-1433

    We propose a sampling method that incorporates a normally distributed sampling series for EEG measurements using compressed sensing. We confirmed that the ADC sampling count and amount of wirelessly transmitted data can be reduced by 11% while maintaining a reconstruction accuracy similar to that of the conventional method.

  • Present Status and Prospect of Graphene Interconnect Applications

    Kazuyoshi UENO  

     
    PAPER

      Pubricized:
    2022/04/21
      Vol:
    E105-C No:10
      Page(s):
    572-577

    Graphene has been expected as an alternative material for copper interconnects in which resistance increases and reliability deteriorates in nanoscale. While the principle advantages are verified by simulations and experiments, they have not been put into practical use due to the immaturity of the manufacturing process leading to mass production. On the other hand, recent steady progress in the fabrication process has increased the possibility of practical application. In this paper, I will review the recent advances and the latest prospects for conductor applications of graphene centered on interconnects. The possibility of further application utilizing the unique characteristics of graphene is discussed.

  • New Family of Polyphase Sequences with Low Correlation from Galois Rings

    Linyan YU  Pinhui KE  Zuling CHANG  

     
    LETTER-Cryptography and Information Security

      Pubricized:
    2022/04/20
      Vol:
    E105-A No:10
      Page(s):
    1425-1428

    In this letter, we give a new construction of a family of sequences of period pk-1 with low correlation value by using additive and multiplicative characters over Galois rings. The new constructed sequence family has family size (M-1)(pk-1)rpkr(e-1) and alphabet size Mpe. Based on the characters sum over Galois rings, an upper bound on the correlation of this sequence family is presented.

  • Sample Selection Approach with Number of False Predictions for Learning with Noisy Labels

    Yuichiro NOMURA  Takio KURITA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2022/07/21
      Vol:
    E105-D No:10
      Page(s):
    1759-1768

    In recent years, deep neural networks (DNNs) have made a significant impact on a variety of research fields and applications. One drawback of DNNs is that it requires a huge amount of dataset for training. Since it is very expensive to ask experts to label the data, many non-expert data collection methods such as web crawling have been proposed. However, dataset created by non-experts often contain corrupted labels, and DNNs trained on such dataset are unreliable. Since DNNs have an enormous number of parameters, it tends to overfit to noisy labels, resulting in poor generalization performance. This problem is called Learning with Noisy labels (LNL). Recent studies showed that DNNs are robust to the noisy labels in the early stage of learning before over-fitting to noisy labels because DNNs learn the simple patterns first. Therefore DNNs tend to output true labels for samples with noisy labels in the early stage of learning, and the number of false predictions for samples with noisy labels is higher than for samples with clean labels. Based on these observations, we propose a new sample selection approach for LNL using the number of false predictions. Our method periodically collects the records of false predictions during training, and select samples with a low number of false predictions from the recent records. Then our method iteratively performs sample selection and training a DNNs model using the updated dataset. Since the model is trained with more clean samples and records more accurate false predictions for sample selection, the generalization performance of the model gradually increases. We evaluated our method on two benchmark datasets, CIFAR-10 and CIFAR-100 with synthetically generated noisy labels, and the obtained results which are better than or comparative to the-state-of-the-art approaches.

  • Mixer-Based Washing Methods for Programmable Microfluidic Devices

    Yifang BAO  Shigeru YAMASHITA  Bing LI  Tsung-Yi HO  

     
    PAPER-VLSI Design Technology and CAD

      Pubricized:
    2022/04/18
      Vol:
    E105-A No:10
      Page(s):
    1385-1391

    When we use a Programmable Microfluidic Device (PMD), we need to wash some contaminated area to use the chip for further experiments. Recently, a novel washing technique called Block-Flushing has been proposed. Block-Flushing washes contaminated area in PMDs by using buffer flows. In Block-Flushing, we need to keep a buffer flow from an input port to an output port of a PMD for a long period to dissolve residual contaminants. Thus, we may need a lot of buffer fluids and washing time even if the contaminated area is small. Another disadvantage of the washing method by Block-Flushing is such that we may not able to clean residual contaminants at valves completely by only buffer flows. To address the above-mentioned issues, this paper proposes a totally new idea to wash PMDs; our method does not use buffer flows, but washes contaminated area by using mixers. By using a mixer, we can dissolve residual contaminants at valves in the area of the mixer very efficiently. In this paper, we propose two methods to wash PMDs by using mixers. The first method can wash the whole chip area by using only four times of a single 2x2-mixer time. We also propose the second method which is a heuristic to reduce the number of moving valves because valves may wear down if they are used many times. We also show some experimental results to confirm that the second method can indeed decrease the number of used valves.

  • Multi-Port Amplifier with Enhanced Linearity and Isolation Employing Feed-Forward Techniques

    Yasunori SUZUKI  Tetsuo HIROTA  Toshio NOJIMA  

     
    PAPER

      Pubricized:
    2022/03/25
      Vol:
    E105-C No:10
      Page(s):
    501-508

    This paper proposes a new multi-port amplifier configuration that employs feed-forward techniques. In general, a multi-port amplifier is used as a transponder in a satellite transmitter. A multi-port amplifier comprises an N-in N-out input-side matrix network, N amplifiers, and an N-in N-out output-side matrix network. Based on this configuration, other undesired ports leak power to the desired port in a multi-port amplifier. If the power amplifier of a cellular base station uses a multi-port amplifier, the power leakage from the other ports causes degradation in the error vector magnitude. The proposed configuration employs N-parallel feed-forward amplifiers with a multi-port amplifier as the main amplifier. The proposed configuration drastically reduces the power leakage using the employed feed-forward techniques. An experimental 2-GHz band four-in four-out multi-port amplifier is constructed and tested. It achieves the leakage power level of -58 dB, a gain deviation of less than 0.05 dB, and a phase deviation of less than 0.45 deg. with the maximum power of 35 dBm over a 20-MHz bandwidth with the center frequency 2.14 GHz at room temperature. The experimental multi-port amplifier reduces the leakage power level by approximately 30 dB compared to that for a multi-port amplifier without the feed-forward techniques. The proposed configuration can be applied to power amplifiers in cellular base stations.

  • An 8.5-dB Insertion Loss and 0.8° RMS Phase Error Ka-Band CMOS Hybrid Phase Shifter Featuring Nonuniform Matching for Satellite Communication

    Xi FU  Yun WANG  Xiaolin WANG  Xiaofan GU  Xueting LUO  Zheng LI  Jian PANG  Atsushi SHIRANE  Kenichi OKADA  

     
    PAPER

      Pubricized:
    2022/04/11
      Vol:
    E105-C No:10
      Page(s):
    552-560

    This paper presents a high-resolution and low-insertion-loss CMOS hybrid phase shifter with a nonuniform matching technique for satellite communication (SATCOM). The proposed hybrid phase shifter includes three 45° coarse phase-shifting stages and one 45° fine phase-tuning stage. The coarse stages are realized by bridged-T switch-type phase shifters (STPS) with 45° phase steps. The fine-tuning stage is based on a reflective-type phase shifter (RTPS) with two identical LC load tanks for phase tuning. A 0.8° phase resolution is realized by this work to support fine beam steering for the SATCOM. To further reduce the chain insertion loss, a nonuniform matching technique is utilized at the coarse stages. For the coarse and fine stages, the measured RMS gain errors at 29GHz are 0.7dB and 0.3dB, respectively. The measured RMS phase errors are 0.8° and 0.4°, respectively. The proposed hybrid phase shifter maintains return losses of all phase states less than -12dB from 24GHz to 34GHz. The presented hybrid phase shifter is fabricated in a standard 65-nm CMOS technology with a 0.14mm2 active area.

  • FOREWORD Open Access

    Kazuya YAMAMOTO  

     
    FOREWORD

      Vol:
    E105-C No:10
      Page(s):
    419-420
  • Heterogeneous Graph Contrastive Learning for Stance Prediction

    Yang LI  Rui QI  

     
    PAPER-Natural Language Processing

      Pubricized:
    2022/07/25
      Vol:
    E105-D No:10
      Page(s):
    1790-1798

    Stance prediction on social media aims to infer the stances of users towards a specific topic or event, which are not expressed explicitly. It is of great significance for public opinion analysis to extract and determine users' stances using user-generated content on social media. Existing research makes use of various signals, ranging from text content to online network connections of users on these platforms. However, it lacks joint modeling of the heterogeneous information for stance prediction. In this paper, we propose a self-supervised heterogeneous graph contrastive learning framework for stance prediction in online debate forums. Firstly, we perform data augmentation on the original heterogeneous information network to generate an augmented view. The original view and augmented view are learned from a meta-path based graph encoder respectively. Then, the contrastive learning among the two views is conducted to obtain high-quality representations of users and issues. Finally, the stance prediction is accomplished by matrix factorization between users and issues. The experimental results on an online debate forum dataset show that our model outperforms other competitive baseline methods significantly.

  • FOREWORD Open Access

    Nobuyoshi KIKUMA  

     
    FOREWORD

      Vol:
    E105-B No:10
      Page(s):
    1105-1106
  • Analysis of Efficiency-Limiting Factors Resulting from Transistor Current Source on Class-F and Inverse Class-F Power Amplifiers Open Access

    Hiroshi YAMAMOTO  Ken KIKUCHI  Valeria VADALÀ  Gianni BOSI  Antonio RAFFO  Giorgio VANNINI  

     
    INVITED PAPER

      Pubricized:
    2022/03/25
      Vol:
    E105-C No:10
      Page(s):
    449-456

    This paper describes the efficiency-limiting factors resulting from transistor current source in the case of class-F and inverse class-F (F-1) operations under saturated region. We investigated the influence of knee voltage and gate-voltage clipping behaviors on drain efficiency as limiting factors for the current source. Numerical analysis using a simplified transistor model was carried out. As a result, we have demonstrated that the limiting factor for class-F-1 operation is the gate-diode conduction rather than knee voltage. On the other hand, class-F PA is restricted by the knee voltage effects. Furthermore, nonlinear measurements carried out on a GaN HEMT validate our analytical results.

  • Pattern Synthesis of Spatial Eigenmodes Exploiting Spherical Conformal Array Open Access

    Akira SAITOU  Ryo ISHIKAWA  Kazuhiko HONJO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2022/04/06
      Vol:
    E105-B No:10
      Page(s):
    1231-1239

    Unique spatial eigenmodes for the spherical coordinate system are shown to be successfully synthesized by properly allocated combinations of current distributions along θ' and φ' on a spherical conformal array. The allocation ratios are analytically found in a closed form with a matrix that relates the expansion coefficients of the current to its radiated field. The coefficients are obtained by general Fourier expansion of the current and the mode expansion of the field, respectively. The validity of the obtained formulas is numerically confirmed, and important effects of the sphere radius and the degrees of the currents on the radiated fields are numerically explained. The formulas are used to design six current distributions that synthesize six unique eigenmodes. The accuracy of the synthesized fields is quantitatively investigated, and the accuracy is shown to be remarkably improved by more than 27dB with two additional kinds of current distributions.

1361-1380hit(42807hit)