1-7hit |
Tianming NI Huaguo LIANG Mu NIE Xiumin XU Aibin YAN Zhengfeng HUANG
Three-dimensional integrated circuits (3D ICs) that employ through-silicon vias (TSVs) integrating multiple dies vertically have opened up the potential of highly improved circuit designs. However, various types of TSV defects may occur during the assembly process, especially the clustered TSV faults because of the winding level of thinned wafer, the surface roughness and cleanness of silicon dies,inducing TSV yield reduction greatly. To tackle this fault clustering problem, router-based and ring-based TSV redundancy architectures were previously proposed. However, these schemes either require too much area overhead or have limited reparability to tolerant clustered TSV faults. Furthermore, the repairing lengths of these schemes are too long to be ignored, leading to additional delay overhead, which may cause timing violation. In this paper, we propose a region-based TSV redundancy design to achieve relatively high reparability as well as low additional delay overhead. Simulation results show that for a given number of TSVs (8*8) and TSV failure rate (1%), our design achieves 11.27% and 20.79% reduction of delay overhead as compared with router-based design and ring-based scheme, respectively. In addition, the reparability of our proposed scheme is much better than ring-based design by 30.84%, while it is close to that of the router-based scheme. More importantly, the overall TSV yield of our design achieves 99.88%, which is slightly higher than that of both router-based method (99.53%) and ring-based design (99.00%).
Shuping ZHANG Jinjia ZHOU Dajiang ZHOU Shinji KIMURA Satoshi GOTO
In this paper, a hamburger architecture with a 3D stacked reconfigurable memory is proposed for a 4K motion estimation (ME) processor. By positioning the memory dies on both the top and bottom sides of the processor die, the proposed hamburger architecture can reduce the usage of the signal through-silicon via (TSV), and balance the power delivery network and the clock tree of the entire system. It results in 1/3 reduction of the usage of signal TSVs. Moreover, a stacked reconfigurable memory architecture is proposed to reduce the fabrication complexity and further reduce the number of signal TSVs by more than 1/2. The reduction of signal TSVs in the entire design is 71.24%. Finally, we address unique issues that occur in electronic design automation (EDA) tools during 3D large-scale integration (LSI) designs. As a result, a 4K ME processor with 7-die stacking 3D system-on-chip design is implemented. The proposed design can support real time 3840 × 2160 @ 120 fps encoding at 130 MHz with less than 540 mW.
Ya-Shih HUANG Han-Yuan CHANG Juinn-Dar HUANG
The emerging three-dimensional (3D) technology is considered as a promising solution for achieving better performance and easier heterogeneous integration. However, the thermal issue becomes exacerbated primarily due to larger power density and longer heat dissipation paths. The thermal issue would also be critical once FPGAs step into the 3D arena. In this article, we first construct a fine-grained thermal resistive model for 3D FPGAs. We show that merely reducing the total power consumption and/or minimizing the power density in vertical direction is not enough for a thermal-aware 3D FPGA backend (placement and routing) flow. Then, we propose our thermal-aware backend flow named TherWare considering location-based heat balance. In the placement stage, TherWare not only considers power distribution of logic tiles in both lateral and vertical directions but also minimizes the interconnect power. In the routing stage, TherWare concentrates on overall power minimization and evenness of power distribution at the same time. Experimental results show that TherWare can significantly reduce the maximum temperature, the maximum temperature gradient, and the temperature deviation only at the cost of a minor increase in delay and runtime as compared with present arts.
An-Sam PENG Ming-Hsiang CHO Yueh-Hua WANG Meng-Fang WANG David CHEN Lin-Kun WU
In this paper, a novel and simple one-port de-embedding technique has been applied to through-silicon-via (TSV) characterization and modeling. This method utilized pad, via, and line structures to extract the equivalent circuit model of TSV. The main advantage of this de-embedding method is that it can reduce the chip area to fabricate test element groups (TEGs) for measurements while keeping S-parameter measurement accuracies. We also analyzed the electrical characteristics of substrate coupling and TSV equivalent impedance. Our results shows good agreements between measurement data and the equivalent circuit model up to 20GHz.
Hung Viet NGUYEN Myunghwan RYU Youngmin KIM
This paper evaluates the impact of Through-Silicon Via (TSV) on the performance and power consumption of 3D circuitry. The physical and electrical model of TSV which considers the coupling effects with adjacent TSVs is exploited in our investigation. Simulation results show that the overall performance of 3D IC infused with TSV can be improved noticeably. The frequency of the ring oscillator in 4-tier stacking layout soars up to two times compared with one in 2D planar. Furthermore, TSV process variations are examined by Monte Carlo simulations to figure out the geometrical factor having more impact in manufacturing. An in-depth research on repeater associated with TSV offers a metric to compute the optimization of 3D systems integration in terms of performance and energy dissipation. By such optimization metric with 45 nm MOSFET used in our circuit layout, it is found that the optimal number of tiers in both performance and power consumption approaches 4 since the substantial TSV-TSV coupling effect in the worst case of interference is expected in 3D IC.
Yuchun MA Xin LI Yu WANG Xianlong HONG
In 3D IC design, thermal issue is a critical challenge. To eliminate hotspots, physical layouts are always adjusted by some incremental changes, such as shifting or duplicating hot blocks. In this paper, we distinguish the thermal-aware incremental changes in three different categories: migrating computation, growing unit and moving hotspot blocks. However, these modifications may degrade the packing area as well as interconnect distribution greatly. In this paper, mixed integer linear programming (MILP) models are devised according to these different incremental changes so that multiple objectives can be optimized simultaneously. Furthermore, to avoid random incremental modification, which may be inefficient and need long runtime to converge, here potential gain is modeled for each candidate incremental change. Based on the potential gain, a novel thermal optimization flow to intelligently choose the best incremental operation is presented. Experimental results show that migrating computation, growing unit and moving hotspot can reduce max on-chip temperature by 7%, 13% and 15% respectively on MCNC/GSRC benchmarks. Still, experimental results also show that the thermal optimization flow can reduce max on-chip temperature by 14% to the initial packings generated by an existing 3D floorplanning tool CBA, and achieve better area and total wirelength improvement than individual operations do. The results with the initial packings from CBA_T (Thermal-aware CBA floorplanner) show that 13.5% temperature reduction can be obtained by our incremental optimization flow.
Xu ZHANG Xiaohong JIANG Susumu HORIGUCHI
Three dimensional (3D) integrated circuits (ICs) have the potential to significantly enhance VLSI chip performance, functionality and device packing density. Interconnects delay and signal integrity issues are critical in chip design. In this paper, we extend the idea of redundant via insertion of conventional 2D ICs and propose an approach for vias insertion/placement in 3D ICs to minimize the propagation delay of interconnects with the consideration of signal integrity. The simulation results based on a 65 nm CMOS technology demonstrate that our approach in general can result in a 9% improvement in average delay and a 26% decrease in reflection coefficient. It is also shown that the proposed approach can be more effective for interconnects delay improvement when it is integrated with the buffer insertion in 3D ICs.