The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ACH(1072hit)

21-40hit(1072hit)

  • Giving a Quasi-Initial Solution to Ising Machines by Controlling External Magnetic Field Coefficients

    Soma KAWAKAMI  Kentaro OHNO  Dema BA  Satoshi YAGI  Junji TERAMOTO  Nozomu TOGAWA  

     
    PAPER

      Pubricized:
    2023/08/16
      Vol:
    E107-A No:1
      Page(s):
    52-62

    Ising machines can find optimum or quasi-optimum solutions of combinatorial optimization problems efficiently and effectively. It is known that, when a good initial solution is given to an Ising machine, we can finally obtain a solution closer to the optimal solution. However, several Ising machines cannot directly accept an initial solution due to its computational nature. In this paper, we propose a method to give quasi-initial solutions into Ising machines that cannot directly accept them. The proposed method gives the positive or negative external magnetic field coefficients (magnetic field controlling term) based on the initial solutions and obtains a solution by using an Ising machine. Then, the magnetic field controlling term is re-calculated every time an Ising machine repeats the annealing process, and hence the solution is repeatedly improved on the basis of the previously obtained solution. The proposed method is applied to the capacitated vehicle routing problem with an additional constraint (constrained CVRP) and the max-cut problem. Experimental results show that the total path distance is reduced by 5.78% on average compared to the initial solution in the constrained CVRP and the sum of cut-edge weight is increased by 1.25% on average in the max-cut problem.

  • Hardware-Trojan Detection at Gate-Level Netlists Using a Gradient Boosting Decision Tree Model and Its Extension Using Trojan Probability Propagation

    Ryotaro NEGISHI  Tatsuki KURIHARA  Nozomu TOGAWA  

     
    PAPER

      Pubricized:
    2023/08/16
      Vol:
    E107-A No:1
      Page(s):
    63-74

    Technological devices have become deeply embedded in people's lives, and their demand is growing every year. It has been indicated that outsourcing the design and manufacturing of integrated circuits, which are essential for technological devices, may lead to the insertion of malicious circuitry, called hardware Trojans (HTs). This paper proposes an HT detection method at gate-level netlists based on XGBoost, one of the best gradient boosting decision tree models. We first propose the optimal set of HT features among many feature candidates at a netlist level through thorough evaluations. Then, we construct an XGBoost-based HT detection method with its optimized hyperparameters. Evaluation experiments were conducted on the netlists from Trust-HUB benchmarks and showed the average F-measure of 0.842 using the proposed method. Also, we newly propose a Trojan probability propagation method that effectively corrects the HT detection results and apply it to the results obtained by XGBoost-based HT detection. Evaluation experiments showed that the average F-measure is improved to 0.861. This value is 0.194 points higher than that of the existing best method proposed so far.

  • Demodulation Framework Based on Machine Learning for Unrepeated Transmission Systems

    Ryuta SHIRAKI  Yojiro MORI  Hiroshi HASEGAWA  

     
    PAPER

      Pubricized:
    2023/09/14
      Vol:
    E107-B No:1
      Page(s):
    39-48

    We propose a demodulation framework to extend the maximum distance of unrepeated transmission systems, where the simplest back propagation (BP), polarization and phase recovery, data arrangement for machine learning (ML), and symbol decision based on ML are rationally combined. The deterministic waveform distortion caused by fiber nonlinearity and chromatic dispersion is partially eliminated by BP whose calculation cost is minimized by adopting the single-step Fourier method in a pre-processing step. The non-deterministic waveform distortion, i.e., polarization and phase fluctuations, can be eliminated in a precise manner. Finally, the optimized ML model conducts the symbol decision under the influence of residual deterministic waveform distortion that cannot be cancelled by the simplest BP. Extensive numerical simulations confirm that a DP-16QAM signal can be transmitted over 240km of a standard single-mode fiber without optical repeaters. The maximum transmission distance is extended by 25km.

  • Feasibility Study of Numerical Calculation and Machine Learning Hybrid Approach for Renal Denervation Temperature Prediction

    Aditya RAKHMADI  Kazuyuki SAITO  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2023/05/22
      Vol:
    E106-C No:12
      Page(s):
    799-807

    Transcatheter renal denervation (RDN) is a novel treatment to reduce blood pressure in patients with resistant hypertension using an energy-based catheter, mostly radio frequency (RF) current, by eliminating renal sympathetic nerve. However, several inconsistent RDN treatments were reported, mainly due to RF current narrow heating area, and the inability to confirm a successful nerve ablation in a deep area. We proposed microwave energy as an alternative for creating a wider ablation area. However, confirming a successful ablation is still a problem. In this paper, we designed a prediction method for deep renal nerve ablation sites using hybrid numerical calculation-driven machine learning (ML) in combination with a microwave catheter. This work is a first-step investigation to check the hybrid ML prediction capability in a real-world situation. A catheter with a single-slot coaxial antenna at 2.45 GHz with a balloon catheter, combined with a thin thermometer probe on the balloon surface, is proposed. Lumen temperature measured by the probe is used as an ML input to predict the temperature rise at the ablation site. Heating experiments using 6 and 8 mm hole phantom with a 41.3 W excited power, and 8 mm with 36.4 W excited power, were done eight times each to check the feasibility and accuracy of the ML algorithm. In addition, the temperature on the ablation site is measured for reference. Prediction by ML algorithm agrees well with the reference, with a maximum difference of 6°C and 3°C in 6 and 8 mm (both power), respectively. Overall, the proposed ML algorithm is capable of predicting the ablation site temperature rise with high accuracy.

  • A Unified Software and Hardware Platform for Machine Learning Aided Wireless Systems

    Dody ICHWANA PUTRA  Muhammad HARRY BINTANG PRATAMA  Ryotaro ISSHIKI  Yuhei NAGAO  Leonardo LANANTE JR  Hiroshi OCHI  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2023/08/22
      Vol:
    E106-A No:12
      Page(s):
    1493-1503

    This paper presents a unified software and hardware wireless AI platform (USHWAP) for developing and evaluating machine learning in wireless systems. The platform integrates multi-software development such as MATLAB and Python with hardware platforms like FPGA and SDR, allowing for flexible and scalable device and edge computing application development. The USHWAP is implemented and validated using FPGAs and SDRs. Wireless signal classification, wireless LAN sensing, and rate adaptation are used as examples to showcase the platform's capabilities. The platform enables versatile development, including software simulation and real-time hardware implementation, offering flexibility and scalability for multiple applications. It is intended to be used by wireless-AI researchers to develop and evaluate intelligent algorithms in a laboratory environment.

  • Analysis and Identification of Root Cause of 5G Radio Quality Deterioration Using Machine Learning

    Yoshiaki NISHIKAWA  Shohei MARUYAMA  Takeo ONISHI  Eiji TAKAHASHI  

     
    PAPER

      Pubricized:
    2023/06/02
      Vol:
    E106-B No:12
      Page(s):
    1286-1292

    It has become increasingly important for industries to promote digital transformation by utilizing 5G and industrial internet of things (IIoT) to improve productivity. To protect IIoT application performance (work speed, productivity, etc.), it is often necessary to satisfy quality of service (QoS) requirements precisely. For this purpose, there is an increasing need to automatically identify the root causes of radio-quality deterioration in order to take prompt measures when the QoS deteriorates. In this paper, a method for identifying the root cause of 5G radio-quality deterioration is proposed that uses machine learning. This Random Forest based method detects the root cause, such as distance attenuation, shielding, fading, or their combination, by analyzing the coefficients of a quadratic polynomial approximation in addition to the mean values of time-series data of radio quality indicators. The detection accuracy of the proposed method was evaluated in a simulation using the MATLAB 5G Toolbox. The detection accuracy of the proposed method was found to be 98.30% when any of the root causes occurs independently, and 83.13% when the multiple root causes occur simultaneously. The proposed method was compared with deep-learning methods, including bidirectional long short-term memory (bidirectional-LSTM) or one-dimensional convolutional neural network (1D-CNN), that directly analyze the time-series data of the radio quality, and the proposed method was found to be more accurate than those methods.

  • GNSS Spoofing Detection Using Multiple Sensing Devices and LSTM Networks

    Xin QI  Toshio SATO  Zheng WEN  Yutaka KATSUYAMA  Kazuhiko TAMESUE  Takuro SATO  

     
    PAPER

      Pubricized:
    2023/08/03
      Vol:
    E106-B No:12
      Page(s):
    1372-1379

    The rise of next-generation logistics systems featuring autonomous vehicles and drones has brought to light the severe problem of Global navigation satellite system (GNSS) location data spoofing. While signal-based anti-spoofing techniques have been studied, they can be challenging to apply to current commercial GNSS modules in many cases. In this study, we explore using multiple sensing devices and machine learning techniques such as decision tree classifiers and Long short-term memory (LSTM) networks for detecting GNSS location data spoofing. We acquire sensing data from six trajectories and generate spoofing data based on the Software-defined radio (SDR) behavior for evaluation. We define multiple features using GNSS, beacons, and Inertial measurement unit (IMU) data and develop models to detect spoofing. Our experimental results indicate that LSTM networks using ten-sequential past data exhibit higher performance, with the accuracy F1 scores above 0.92 using appropriate features including beacons and generalization ability for untrained test data. Additionally, our results suggest that distance from beacons is a valuable metric for detecting GNSS spoofing and demonstrate the potential for beacon installation along future drone highways.

  • Machine Learning-Based Compensation Methods for Weight Matrices of SVD-MIMO Open Access

    Kiminobu MAKINO  Takayuki NAKAGAWA  Naohiko IAI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2023/07/24
      Vol:
    E106-B No:12
      Page(s):
    1441-1454

    This paper proposes and evaluates machine learning (ML)-based compensation methods for the transmit (Tx) weight matrices of actual singular value decomposition (SVD)-multiple-input and multiple-output (MIMO) transmissions. These methods train ML models and compensate the Tx weight matrices by using a large amount of training data created from statistical distributions. Moreover, this paper proposes simplified channel metrics based on the channel quality of actual SVD-MIMO transmissions to evaluate compensation performance. The optimal parameters are determined from many ML parameters by using the metrics, and the metrics for this determination are evaluated. Finally, a comprehensive computer simulation shows that the optimal parameters improve performance by up to 7.0dB compared with the conventional method.

  • Associating Colors with Mental States for Computer-Aided Drawing Therapy

    Satoshi MAEDA  Tadahiko KIMOTO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/09/14
      Vol:
    E106-D No:12
      Page(s):
    2057-2068

    The aim of a computer-aided drawing therapy system in this work is to associate drawings which a client makes with the client's mental state in quantitative terms. A case study is conducted on experimental data which contain both pastel drawings and mental state scores obtained from the same client in a psychotherapy program. To perform such association through colors, we translate a drawing to a color feature by measuring its representative colors as primary color rates. A primary color rate of a color is defined from a psychological primary color in a way such that it shows a rate of emotional properties of the psychological primary color which is supposed to affect the color. To obtain several informative colors as representative ones of a drawing, we define two kinds of color: approximate colors extracted by color reduction, and area-averaged colors calculated from the approximate colors. A color analysis method for extracting representative colors from each drawing in a drawing sequence under the same conditions is presented. To estimate how closely a color feature is associated with a concurrent mental state, we propose a method of utilizing machine-learning classification. A practical way of building a classification model through training and validation on a very small dataset is presented. The classification accuracy reached by the model is considered as the degree of association of the color feature with the mental state scores given in the dataset. Experiments were carried out on given clinical data. Several kinds of color feature were compared in terms of the association with the same mental state. As a result, we found out a good color feature with the highest degree of association. Also, primary color rates proved more effective in representing colors in psychological terms than RGB components. The experimentals provide evidence that colors can be associated quantitatively with states of human mind.

  • Improvement of Differential-GNSS Positioning by Estimating Code Double-Difference-Error Using Machine Learning

    Hirotaka KATO  Junichi MEGURO  

     
    PAPER-Pattern Recognition

      Pubricized:
    2023/09/12
      Vol:
    E106-D No:12
      Page(s):
    2069-2077

    Recently, Global navigation satellite system (GNSS) positioning has been widely used in various applications (e.g. car navigation system, smartphone map application, autonomous driving). In GNSS positioning, coordinates are calculated from observed satellite signals. The observed signals contain various errors, so the calculated coordinates also have some errors. Double-difference is one of the widely used ideas to reduce the errors of the observed signals. Although double-difference can remove many kinds of errors from the observed signals, some errors still remain (e.g. multipath error). In this paper, we define the remaining error as “double-difference-error (DDE)” and propose a method for estimating DDE using machine learning. In addition, we attempt to improve DGNSS positioning by feeding back the estimated DDE. Previous research applying machine learning to GNSS has focused on classifying whether the signal is LOS (Line Of Sight) or NLOS (Non Line Of Sight), and there is no study that attempts to estimate the amount of error itself as far as we know. Furthermore, previous studies had the limitation that their dataset was recorded at only a few locations in the same city. This is because these studies are mainly aimed at improving the positioning accuracy of vehicles, and collecting large amounts of data using vehicles is costly. To avoid this problem, in this research, we use a huge amount of openly available stationary point data for training. Through the experiments, we confirmed that the proposed method can reduce the DGNSS positioning error. Even though the DDE estimator was trained only on stationary point data, the proposed method improved the DGNSS positioning accuracy not only with stationary point but also with mobile rover. In addition, by comparing with the previous (detect and remove) approach, we confirmed the effectiveness of the DDE feedback approach.

  • Comments on Quasi-Linear Support Vector Machine for Nonlinear Classification

    Sei-ichiro KAMATA  Tsunenori MINE  

     
    WRITTEN DISCUSSION-General Fundamentals and Boundaries

      Pubricized:
    2023/05/08
      Vol:
    E106-A No:11
      Page(s):
    1444-1445

    In 2014, the above paper entitled ‘Quasi-Linear Support Vector Machine for Nonlinear Classification’ was published by Zhou, et al. [1]. They proposed a quasi-linear kernel function for support vector machine (SVM). However, in this letter, we point out that this proposed kernel function is a part of multiple kernel functions generated by well-known multiple kernel learning which is proposed by Bach, et al. [2] in 2004. Since then, there have been a lot of related papers on multiple kernel learning with several applications [3]. This letter verifies that the main kernel function proposed by Zhou, et al. [1] can be derived using multiple kernel learning algorithms [3]. In the kernel construction, Zhou, et al. [1] used Gaussian kernels, but the multiple kernel learning had already discussed the locality of additive Gaussian kernels or other kernels in the framework [4], [5]. Especially additive Gaussian or other kernels were discussed in tutorial at major international conference ECCV2012 [6]. The authors did not discuss these matters.

  • Authors' Reply to the Comments by Kamata et al.

    Bo ZHOU  Benhui CHEN  Jinglu HU  

     
    WRITTEN DISCUSSION

      Pubricized:
    2023/05/08
      Vol:
    E106-A No:11
      Page(s):
    1446-1449

    We thank Kamata et al. (2023) [1] for their interest in our work [2], and for providing an explanation of the quasi-linear kernel from a viewpoint of multiple kernel learning. In this letter, we first give a summary of the quasi-linear SVM. Then we provide a discussion on the novelty of quasi-linear kernels against multiple kernel learning. Finally, we explain the contributions of our work [2].

  • Physical Status Representation in Multiple Administrative Optical Networks by Federated Unsupervised Learning

    Takahito TANIMURA  Riu HIRAI  Nobuhiko KIKUCHI  

     
    PAPER

      Pubricized:
    2023/08/01
      Vol:
    E106-B No:11
      Page(s):
    1084-1092

    We present our data-collection and deep neural network (DNN)-training scheme for extracting the optical status from signals received by digital coherent optical receivers in fiber-optic networks. The DNN is trained with unlabeled datasets across multiple administrative network domains by combining federated learning and unsupervised learning. The scheme allows network administrators to train a common DNN-based encoder that extracts optical status in their networks without revealing their private datasets. An early-stage proof of concept was numerically demonstrated by simulation by estimating the optical signal-to-noise ratio and modulation format with 64-GBd 16QAM and quadrature phase-shift keying signals.

  • Low Complexity Resource Allocation in Frequency Domain Non-Orthogonal Multiple Access Open Access

    Satoshi DENNO  Taichi YAMAGAMI  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/05/08
      Vol:
    E106-B No:10
      Page(s):
    1004-1014

    This paper proposes low complexity resource allocation in frequency domain non-orthogonal multiple access where many devices access with a base station. The number of the devices is assumed to be more than that of the resource for network capacity enhancement, which is demanded in massive machine type communications (mMTC). This paper proposes two types of resource allocation techniques, all of which are based on the MIN-MAX approach. One of them seeks for nicer resource allocation with only channel gains. The other technique applies the message passing algorithm (MPA) for better resource allocation. The proposed resource allocation techniques are evaluated by computer simulation in frequency domain non-orthogonal multiple access. The proposed technique with the MPA achieves the best bit error rate (BER) performance in the proposed techniques. However, the computational complexity of the proposed techniques with channel gains is much smaller than that of the proposed technique with the MPA, whereas the BER performance of the proposed techniques with channel gains is only about 0.1dB inferior to that with the MPA in the multiple access with the overloading ratio of 1.5 at the BER of 10-4. They attain the gain of about 10dB at the BER of 10-4 in the multiple access with the overloading ration of 2.0. Their complexity is 10-16 as small as the conventional technique.

  • Practical Improvement and Performance Evaluation of Road Damage Detection Model using Machine Learning

    Tomoya FUJII  Rie JINKI  Yuukou HORITA  

     
    LETTER-Image

      Pubricized:
    2023/06/13
      Vol:
    E106-A No:9
      Page(s):
    1216-1219

    The social infrastructure, including roads and bridges built during period of rapid economic growth in Japan, is now aging, and there is a need to strategically maintain and renew the social infrastructure that is aging. On the other hand, road maintenance in rural areas is facing serious problems such as reduced budgets for maintenance and a shortage of engineers due to the declining birthrate and aging population. Therefore, it is difficult to visually inspect all roads in rural areas by maintenance engineers, and a system to automatically detect road damage is required. This paper reports practical improvements to the road damage model using YOLOv5, an object detection model capable of real-time operation, focusing on road image features.

  • PNB Based Differential Cryptanalysis of Salsa20 and ChaCha

    Nasratullah GHAFOORI  Atsuko MIYAJI  Ryoma ITO  Shotaro MIYASHITA  

     
    PAPER

      Pubricized:
    2023/07/13
      Vol:
    E106-D No:9
      Page(s):
    1407-1422

    This paper introduces significant improvements over the existing cryptanalysis approaches on Salsa20 and ChaCha stream ciphers. For the first time, we reduced the attack complexity on Salsa20/8 to the lowest possible margin. We introduced an attack on ChaCha7.25. It is the first attack of its type on ChaCha7.25/20. In our approach, we studied differential cryptanalysis of the Salsa20 and ChaCha stream ciphers based on a comprehensive analysis of probabilistic neutral bits (PNBs). The existing differential cryptanalysis approaches on Salsa20 and ChaCha stream ciphers first study the differential bias at specific input and output differential positions and then search for probabilistic neutral bits. However, the differential bias and the set of PNBs obtained in this method are not always the ideal combination to conduct the attack against the ciphers. The researchers have not focused on the comprehensive analysis of the probabilistic neutrality measure of all key bits concerning all possible output difference positions at all possible internal rounds of Salsa20 and ChaCha stream ciphers. Moreover, the relationship between the neutrality measure and the number of inverse quarter rounds has not been scrutinized yet. To address these study gaps, we study the differential cryptanalysis based on the comprehensive analysis of probabilistic neutral bits on the reduced-round Salsa20 and ChaCha. At first, we comprehensively analyze the neutrality measure of 256 key bits positions. Afterward, we select the output difference bit position with the best average neutrality measure and look for the corresponding input differential with the best differential bias. Considering all aspects, we present an attack on Salsa20/8 with a time complexity of 2241.62 and data complexity of 231.5, which is the best-known single bit differential attack on Salsa20/8 and then, we introduced an attack on ChaCha7.25 rounds with a time complexity of 2254.011 and data complexity of 251.81.

  • Fish School Behaviour Classification for Optimal Feeding Using Dense Optical Flow

    Kazuki FUKAE  Tetsuo IMAI  Kenichi ARAI  Toru KOBAYASHI  

     
    PAPER

      Pubricized:
    2023/06/20
      Vol:
    E106-D No:9
      Page(s):
    1472-1479

    With the growing global demand for seafood, sustainable aquaculture is attracting more attention than conventional natural fishing, which causes overfishing and damage to the marine environment. However, a major problem facing the aquaculture industry is the cost of feeding, which accounts for about 60% of a fishing expenditure. Excessive feeding increases costs, and the accumulation of residual feed on the seabed negatively impacts the quality of water environments (e.g., causing red tides). Therefore, the importance of raising fishes efficiently with less food by optimizing the timing and quantity of feeding becomes more evident. Thus, we developed a system to quantitate the amount of fish activity for the optimal feeding time and feed quantity based on the images taken. For quantitation, optical flow that is a method for tracking individual objects was used. However, it is difficult to track individual fish and quantitate their activity in the presence of many fishes. Therefore, all fish in the filmed screen were considered as a single school and the amount of change in an entire screen was used as the amount of the school activity. We divided specifically the entire image into fixed regions and quantitated by vectorizing the amount of change in each region using optical flow. A vector represents the moving distance and direction. We used the numerical data of a histogram as the indicator for the amount of fish activity by dividing them into classes and recording the number of occurrences in each class. We verified the effectiveness of the indicator by quantitating the eating and not eating movements during feeding. We evaluated the performance of the quantified indicators by the support vector classification, which is a form of machine learning. We confirmed that the two activities can be correctly classified.

  • Few-Shot Learning-Based Malicious IoT Traffic Detection with Prototypical Graph Neural Networks

    Thin Tharaphe THEIN  Yoshiaki SHIRAISHI  Masakatu MORII  

     
    PAPER

      Pubricized:
    2023/06/22
      Vol:
    E106-D No:9
      Page(s):
    1480-1489

    With a rapidly escalating number of sophisticated cyber-attacks, protecting Internet of Things (IoT) networks against unauthorized activity is a major concern. The detection of malicious attack traffic is thus crucial for IoT security to prevent unwanted traffic. However, existing traditional malicious traffic detection systems which relied on supervised machine learning approach need a considerable number of benign and malware traffic samples to train the machine learning models. Moreover, in the cases of zero-day attacks, only a few labeled traffic samples are accessible for analysis. To deal with this, we propose a few-shot malicious IoT traffic detection system with a prototypical graph neural network. The proposed approach does not require prior knowledge of network payload binaries or network traffic signatures. The model is trained on labeled traffic data and tested to evaluate its ability to detect new types of attacks when only a few labeled traffic samples are available. The proposed detection system first categorizes the network traffic as a bidirectional flow and visualizes the binary traffic flow as a color image. A neural network is then applied to the visualized traffic to extract important features. After that, using the proposed few-shot graph neural network approach, the model is trained on different few-shot tasks to generalize it to new unseen attacks. The proposed model is evaluated on a network traffic dataset consisting of benign traffic and traffic corresponding to six types of attacks. The results revealed that our proposed model achieved an F1 score of 0.91 and 0.94 in 5-shot and 10-shot classification, respectively, and outperformed the baseline models.

  • Malicious Domain Detection Based on Decision Tree

    Thin Tharaphe THEIN  Yoshiaki SHIRAISHI  Masakatu MORII  

     
    LETTER

      Pubricized:
    2023/06/22
      Vol:
    E106-D No:9
      Page(s):
    1490-1494

    Different types of malicious attacks have been increasing simultaneously and have become a serious issue for cybersecurity. Most attacks leverage domain URLs as an attack communications medium and compromise users into a victim of phishing or spam. We take advantage of machine learning methods to detect the maliciousness of a domain automatically using three features: DNS-based, lexical, and semantic features. The proposed approach exhibits high performance even with a small training dataset. The experimental results demonstrate that the proposed scheme achieves an approximate accuracy of 0.927 when using a random forest classifier.

  • Low-Cost Learning-Based Path Loss Estimation Using Correlation Graph CNN

    Keita IMAIZUMI  Koichi ICHIGE  Tatsuya NAGAO  Takahiro HAYASHI  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2023/01/26
      Vol:
    E106-A No:8
      Page(s):
    1072-1076

    In this paper, we propose a method for predicting radio wave propagation using a correlation graph convolutional neural network (C-Graph CNN). We examine what kind of parameters are suitable to be used as system parameters in C-Graph CNN. Performance of the proposed method is evaluated by the path loss estimation accuracy and the computational cost through simulation.

21-40hit(1072hit)