The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

1621-1640hit(18690hit)

  • Simulated Annealing Method for Relaxed Optimal Rule Ordering

    Takashi HARADA  Ken TANAKA  Kenji MIKAWA  

     
    PAPER

      Pubricized:
    2019/12/20
      Vol:
    E103-D No:3
      Page(s):
    509-515

    Recent years have witnessed a rapid increase in cyber-attacks through unauthorized accesses and DDoS attacks. Since packet classification is a fundamental technique to prevent such illegal communications, it has gained considerable attention. Packet classification is achieved with a linear search on a classification rule list that represents the packet classification policy. As such, a large number of rules can result in serious communication latency. To decrease this latency, the problem is formalized as optimal rule ordering (ORO). In most cases, this problem aims to find the order of rules that minimizes latency while satisfying the dependency relation of the rules, where rules ri and rj are dependent if there is a packet that matches both ri and rj and their actions applied to packets are different. However, there is a case in which although the ordering violates the dependency relation, the ordering satisfies the packet classification policy. Since such an ordering can decrease the latency compared to an ordering under the constraint of the dependency relation, we have introduced a new model, called relaxed optimal rule ordering (RORO). In general, it is difficult to determine whether an ordering satisfies the classification policy, even when it violates the dependency relation, because this problem contains unsatisfiability. However, using a zero-suppressed binary decision diagram (ZDD), we can determine it in a reasonable amount of time. In this paper, we present a simulated annealing method for RORO which interchanges rules by determining whether rules ri and rj can be interchanged in terms of policy violation using the ZDD. The experimental results show that our method decreases latency more than other heuristics.

  • Performance Analysis of Weighted Rank Constrained Rank Minimization Interference Alignment for Three-Tier Downlink Heterogeneous Networks

    Ahmed M. BENAYA  Osamu MUTA  Maha ELSABROUTY  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/08/27
      Vol:
    E103-B No:3
      Page(s):
    262-271

    Heterogeneous networks (HetNets) technology is expected to be applied in next generation cellular networks to boost system capacity. However, applying HetNets introduces a significant amount of interference among different tiers within the same cell. In this paper, we propose a weighted rank constrained rank minimization (WRCRM) based interference alignment (IA) approach for three-tier HetNets. The concept of RCRM is applied in a different way to deal with the basic characteristic of different tiers: their different interference tolerance. In the proposed WRCRM approach, interference components at different tiers are weighted with different weighting factors (WFs) to reflect their vulnerability to interference. First, we derive an inner and a loose outer bound on the achievable degrees of freedom (DoF) for the three-tier system that is modeled as a three-user mutually interfering broadcast channel (MIBC). Then, the derived bounds along with the well-known IA feasibility conditions are used to show the effectiveness of the proposed WRCRM approach. Results show that there exist WF values that maximize the achievable interference-free dimensions. Moreover, adjusting the required number of DoF according to the derived bounds improves the performance of the WRCRM approach.

  • SOH Aware System-Level Battery Management Methodology for Decentralized Energy Network

    Daichi WATARI  Ittetsu TANIGUCHI  Takao ONOYE  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E103-A No:3
      Page(s):
    596-604

    The decentralized energy network is one of the promising solutions as a next-generation power grid. In this system, each house has a photovoltaic (PV) panel as a renewable energy source and a battery which is an essential component to balance between generation and demand. The common objective of the battery management on such systems is to minimize only the purchased energy from a power company, but battery degradation caused by charge/discharge cycles is also a serious problem. This paper proposes a State-of-Health (SOH) aware system-level battery management methodology for the decentralized energy network. The power distribution problem is often solved with mixed integer programming (MIP), and the proposed MIP formulation takes into account the SOH model. In order to minimize the purchased energy and reduce the battery degradation simultaneously, the optimization problem is divided into two stages: 1) the purchased energy minimization, and 2) the battery aging factor reducing, and the trade-off exploration between the purchased energy and the battery degradation is available. Experimental results show that the proposed method achieves the better trade-off and reduces the battery aging cost by 14% over the baseline method while keeping the purchased energy minimum.

  • Receiver Differential Code Bias Estimation under Disturbed Ionosphere Status Using Linear Planar Model Based Minimum Standard Deviation Searching Method with Bias Detection Open Access

    Yan ZHANG  Lei CHEN  Xiaomei TANG  Gang OU  

     
    PAPER-Satellite Communications

      Pubricized:
    2019/09/20
      Vol:
    E103-B No:3
      Page(s):
    272-282

    Differential code biases (DCBs) are important parameters that must be estimated accurately for precise positioning and Satellite Based Augmentation Systems (SBAS) ionospheric related parameter generation. In this paper, in order to solve the performance degradation problem of the traditional minimum STD searching algorithm in disturbed ionosphere status and in geomagnetic low latitudes, we propose a linear planar based minimum STD searching algorithm. Firstly, we demonstrate the linear planar trend of the local vertical TEC and introduce the linear planar model based minimum standard variance searching method. Secondly, we validate the correctness of our proposed method through theoretical analysis and propose bias detection to avoid large estimation bias. At last, we show the performance of our proposed method under different geomagnetic latitudes, different seasons and different ionosphere status. The experimental results show that for the traditional minimum STD searching algorithm based on constant model, latitude difference is the key factor affecting the performance of DCB estimation. The DCB estimation performance in geomagnetic mid latitudes is the best, followed by the high latitudes and the worst is for the low latitudes. While the algorithm proposed in this paper can effectively solve the performance degradation problem of DCB estimation in geomagnetic low latitudes by using the linear planar model which is with a higher degree of freedom to model the local ionosphere characteristics and design dJ to screen the epochs. Through the analysis of the DCB estimation results of a large number of stations, it can be found that the probability of large estimation deviation of the traditional method will increase obviously under the disturb ionosphere conditions, but the algorithm we proposed can effectively control the amplitude of the maximum deviation and alleviate the probability of large estimation deviation in disturb ionosphere status.

  • Combining CNN and Broad Learning for Music Classification

    Huan TANG  Ning CHEN  

     
    PAPER-Music Information Processing

      Pubricized:
    2019/12/05
      Vol:
    E103-D No:3
      Page(s):
    695-701

    Music classification has been inspired by the remarkable success of deep learning. To enhance efficiency and ensure high performance at the same time, a hybrid architecture that combines deep learning and Broad Learning (BL) is proposed for music classification tasks. At the feature extraction stage, the Random CNN (RCNN) is adopted to analyze the Mel-spectrogram of the input music sound. Compared with conventional CNN, RCNN has more flexible structure to adapt to the variance contained in different types of music. At the prediction stage, the BL technique is introduced to enhance the prediction accuracy and reduce the training time as well. Experimental results on three benchmark datasets (GTZAN, Ballroom, and Emotion) demonstrate that: i) The proposed scheme achieves higher classification accuracy than the deep learning based one, which combines CNN and LSTM, on all three benchmark datasets. ii) Both RCNN and BL contribute to the performance improvement of the proposed scheme. iii) The introduction of BL also helps to enhance the prediction efficiency of the proposed scheme.

  • Parameter Estimation for Multiple Chirp Signals Based on Single Channel Nyquist Folding Receiver

    Zhaoyang QIU  Qi ZHANG  Minhong SUN  Jun ZHU  

     
    LETTER-Digital Signal Processing

      Vol:
    E103-A No:3
      Page(s):
    623-628

    The modern radar signals are in a wide frequency space. The receiving bandwidth of the radar reconnaissance receiver should be wide enough to intercept the modern radar signals. The Nyquist folding receiver (NYFR) is a novel wideband receiving architecture and it has a high intercept probability. Chirp signals are widely used in modern radar system. Because of the wideband receiving ability, the NYFR will receive the concurrent multiple chirp signals. In this letter, we propose a novel parameter estimation algorithm for the multiple chirp signals intercepted by single channel NYFR. Compared with the composite NYFR, the proposed method can save receiving resources. In addition, the proposed approach can estimate the parameters of the chirp signals even the NYFR outputs are under frequency aliasing circumstance. Simulation results show the efficacy of the proposed method.

  • Survey on Challenges and Achievements in Context-Aware Requirement Modeling

    Yuanbang LI  Rong PENG  Bangchao WANG  

     
    SURVEY PAPER-Software Engineering

      Pubricized:
    2019/12/20
      Vol:
    E103-D No:3
      Page(s):
    553-565

    A context-aware system always needs to adapt its behaviors according to context changes; therefore, modeling context-aware requirements is a complex task. With the increasing use of mobile computing, research on methods of modeling context-aware requirements have become increasingly important, and a large number of relevant studies have been conducted. However, no comprehensive analysis of the challenges and achievements has been performed. The methodology of systematic literature review was used in this survey, in which 68 reports were selected as primary studies. The challenges and methods to confront these challenges in context-aware requirement modeling are summarized. The main contributions of this work are: (1) four challenges and nine sub-challenges are identified; (2) eight kinds of methods in three categories are identified to address these challenges; (3) the extent to which these challenges have been solved is evaluated; and (4) directions for future research are elaborated.

  • BER due to Intersymbol Interference in Maximal-Ratio Combining Reception Analyzed Based on Equivalent Transmission-Path Model

    Yoshio KARASAWA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/09/06
      Vol:
    E103-B No:3
      Page(s):
    229-239

    The equivalent transmission-path model is a propagation-oriented channel model for predicting the bit error rate due to intersymbol interference in single-input single-output systems. We extend this model to develop a new calculation scheme for maximal-ratio combining diversity reception in single-input multiple-output configurations. A key part of the study is to derive a general formula expressing the joint probability density function of the amplitude ratio and phase difference of the two-path model. In this derivation, we mainly take a theoretical approach with the aid of Monte Carlo simulation. Then, very high-accuracy estimation of the average bit error rate due to intersymbol interference (ISI) for CQPSK calculated based on the model is confirmed by computer simulation. Finally, we propose a very simple calculation formula for the prediction of the BER due to ISI that is commonly applicable to various modulation/demodulation schemes, such as CQPSK, DQPSK, 16QAM, and CBPSK in maximal-ratio combining diversity reception.

  • Local Memory Mapping of Multicore Processors on an Automatic Parallelizing Compiler

    Yoshitake OKI  Yuto ABE  Kazuki YAMAMOTO  Kohei YAMAMOTO  Tomoya SHIRAKAWA  Akimasa YOSHIDA  Keiji KIMURA  Hironori KASAHARA  

     
    PAPER

      Vol:
    E103-C No:3
      Page(s):
    98-109

    Utilization of local memory from real-time embedded systems to high performance systems with multi-core processors has become an important factor for satisfying hard deadline constraints. However, challenges lie in the area of efficiently managing the memory hierarchy, such as decomposing large data into small blocks to fit onto local memory and transferring blocks for reuse and replacement. To address this issue, this paper presents a compiler optimization method that automatically manage local memory of multi-core processors. The method selects and maps multi-dimensional data onto software specified memory blocks called Adjustable Blocks. These blocks are hierarchically divisible with varying sizes defined by the features of the input application. Moreover, the method introduces mapping structures called Template Arrays to maintain the indices of the decomposed multi-dimensional data. The proposed work is implemented on the OSCAR automatic parallelizing compiler and evaluations were performed on the Renesas RP2 8-core processor. Experimental results from NAS Parallel Benchmark, SPEC benchmark, and multimedia applications show the effectiveness of the method, obtaining maximum speed-ups of 20.44 with 8 cores utilizing local memory from single core sequential versions that use off-chip memory.

  • Superpixel Segmentation Based on Global Similarity and Contour Region Transform

    Bing LUO  Junkai XIONG  Li XU  Zheng PEI  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2019/12/03
      Vol:
    E103-D No:3
      Page(s):
    716-719

    This letter proposes a new superpixel segmentation algorithm based on global similarity and contour region transformation. The basic idea is that pixels surrounded by the same contour are more likely to belong to the same object region, which could be easily clustered into the same superpixel. To this end, we use contour scanning to estimate the global similarity between pixels and corresponded centers. In addition, we introduce pixel's gradient information of contour transform map to enhance the pixel's global similarity to overcome the missing contours in blurred region. Benefited from our global similarity, the proposed method could adherent with blurred and low contrast boundaries. A large number of experiments on BSDS500 and VOC2012 datasets show that the proposed algorithm performs better than traditional SLIC.

  • Generative Moment Matching Network-Based Neural Double-Tracking for Synthesized and Natural Singing Voices

    Hiroki TAMARU  Yuki SAITO  Shinnosuke TAKAMICHI  Tomoki KORIYAMA  Hiroshi SARUWATARI  

     
    PAPER-Speech and Hearing

      Pubricized:
    2019/12/23
      Vol:
    E103-D No:3
      Page(s):
    639-647

    This paper proposes a generative moment matching network (GMMN)-based post-filtering method for providing inter-utterance pitch variation to singing voices and discusses its application to our developed mixing method called neural double-tracking (NDT). When a human singer sings and records the same song twice, there is a difference between the two recordings. The difference, which is called inter-utterance variation, enriches the performer's musical expression and the audience's experience. For example, it makes every concert special because it never recurs in exactly the same manner. Inter-utterance variation enables a mixing method called double-tracking (DT). With DT, the same phrase is recorded twice, then the two recordings are mixed to give richness to singing voices. However, in synthesized singing voices, which are commonly used to create music, there is no inter-utterance variation because the synthesis process is deterministic. There is also no inter-utterance variation when only one voice is recorded. Although there is a signal processing-based method called artificial DT (ADT) to layer singing voices, the signal processing results in unnatural sound artifacts. To solve these problems, we propose a post-filtering method for randomly modulating synthesized or natural singing voices as if the singer sang again. The post-filter built with our method models the inter-utterance pitch variation of human singing voices using a conditional GMMN. Evaluation results indicate that 1) the proposed method provides perceptible and natural inter-utterance variation to synthesized singing voices and that 2) our NDT exhibits higher double-trackedness than ADT when applied to both synthesized and natural singing voices.

  • Range Points Migration Based Spectroscopic Imaging Algorithm for Wide-Beam Terahertz Subsurface Sensor Open Access

    Takamaru MATSUI  Shouhei KIDERA  

     
    BRIEF PAPER-Electromagnetic Theory

      Pubricized:
    2019/09/25
      Vol:
    E103-C No:3
      Page(s):
    127-130

    Here, we present a novel spectroscopic imaging method based on the boundary-extraction scheme for wide-beam terahertz (THz) three-dimensional imaging. Optical-lens-focusing systems for THz subsurface imaging generally require the depth of the object from the surface to be input beforehand to achieve the desired azimuth resolution. This limitation can be alleviated by incorporating a wide-beam THz transmitter into the synthetic aperture to automatically change the focusing depth in the post-signal processing. The range point migration (RPM) method has been demonstrated to have significant advantages in terms of imaging accuracy over the synthetic-aperture method. Moreover, in the RPM scheme, spectroscopic information can be easily associated with each scattering center. Thus, we propose an RPM-based terahertz spectroscopic imaging method. The finite-difference time-domain-based numerical analysis shows that the proposed algorithm provides accurate target boundary imaging associated with each frequency-dependent characteristic.

  • ASAN: Self-Attending and Semantic Activating Network towards Better Object Detection

    Xinyu ZHU  Jun ZHANG  Gengsheng CHEN  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2019/11/25
      Vol:
    E103-D No:3
      Page(s):
    648-659

    Recent top-performing object detectors usually depend on a two-stage approach, which benefits from its region proposal and refining practice but suffers low detection speed. By contrast, one-stage approaches have the advantage of high efficiency while sacrifice their accuracies to some extent. In this paper, we propose a novel single-shot object detection network which inherits the merits of both. Motivated by the idea of semantic enrichment to the convolutional features within a typical deep detector, we propose two novel modules: 1) by modeling the semantic interactions between channels and the long-range dependencies between spatial positions, the self-attending module generates both channel and position attention, and enhance the original convolutional features in a self-guided manner; 2) leveraging the class-discriminative localization ability of classification-trained CNN, the semantic activating module learns a semantic meaningful convolutional response which augments low-level convolutional features with strong class-specific semantic information. The so called self-attending and semantic activating network (ASAN) achieves better accuracy than two-stage methods and is able to fulfil real-time processing. Comprehensive experiments on PASCAL VOC indicates that ASAN achieves state-of-the-art detection performance with high efficiency.

  • Analysis of Antenna Performance Degradation due to Coupled Electromagnetic Interference from Nearby Circuits

    Hosang LEE  Jawad YOUSAF  Kwangho KIM  Seongjin MUN  Chanseok HWANG  Wansoo NAH  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2019/08/27
      Vol:
    E103-C No:3
      Page(s):
    110-118

    This paper analyzes and compares two methods to estimate electromagnetically coupled noises introduced to an antenna due to the nearby circuits at a circuit design stage. One of them is to estimate the power spectrum, and the other one is to estimate the active S11 parameter at the victim antenna, respectively, and both of them use simulated standard S-parameters for the electromagnetic coupling in the circuit. They also need the assumed or measured excitation of noise sources. To confirm the validness of the two methods, an evaluation board consisting of an antenna and noise sources were designed and fabricated in which voltage controlled oscillator (VCO) chips are placed as noise sources. The generated electromagnetic noises are transferred to an antenna via loop-shaped transmission lines, degrading the performance of the antenna. In this paper, detailed analysis procedures are described using the evaluation board, and it is shown that the two methods are equivalent to each other in terms of the induced voltages in the antenna. Finally, a procedure to estimate antenna performance degradation at the design stage is summarized.

  • Bounds for the Multislope Ski-Rental Problem

    Hiroshi FUJIWARA  Kei SHIBUSAWA  Kouki YAMAMOTO  Hiroaki YAMAMOTO  

     
    PAPER

      Pubricized:
    2019/11/25
      Vol:
    E103-D No:3
      Page(s):
    481-488

    The multislope ski-rental problem is an online optimization problem that generalizes the classical ski-rental problem. The player is offered not only a buy and a rent options but also other options that charge both initial and per-time fees. The competitive ratio of the classical ski-rental problem is known to be 2. In contrast, the best known so far on the competitive ratio of the multislope ski-rental problem is an upper bound of 4 and a lower bound of 3.62. In this paper we consider a parametric version of the multislope ski-rental problem, regarding the number of options as a parameter. We prove an upper bound for the parametric problem which is strictly less than 4. Moreover, we give a simple recurrence relation that yields an equation having a lower bound value as its root.

  • Loosely Stabilizing Leader Election on Arbitrary Graphs in Population Protocols without Identifiers or Random Numbers

    Yuichi SUDO  Fukuhito OOSHITA  Hirotsugu KAKUGAWA  Toshimitsu MASUZAWA  

     
    PAPER

      Pubricized:
    2019/11/27
      Vol:
    E103-D No:3
      Page(s):
    489-499

    We consider the leader election problem in the population protocol model, which Angluin et al. proposed in 2004. A self-stabilizing leader election is impossible for complete graphs, arbitrary graphs, trees, lines, degree-bounded graphs, and so on unless the protocol knows the exact number of nodes. In 2009, to circumvent the impossibility, we introduced the concept of loose stabilization, which relaxes the closure requirement of self-stabilization. A loosely stabilizing protocol guarantees that starting from any initial configuration, a system reaches a safe configuration, and after that, the system keeps its specification (e.g., the unique leader) not forever but for a sufficiently long time (e.g., an exponentially long time with respect to the number of nodes). Our previous works presented two loosely stabilizing leader election protocols for arbitrary graphs; one uses agent identifiers, and the other uses random numbers to elect a unique leader. In this paper, we present a loosely stabilizing protocol that solves leader election on arbitrary graphs without agent identifiers or random numbers. Given upper bounds N and Δ of the number of nodes n and the maximum degree of nodes δ, respectively, the proposed protocol reaches a safe configuration within O(mn2d log n+mNΔ2 log N) expected steps and keeps the unique leader for Ω(NeN) expected steps, where m is the number of edges and d is the diameter of the graph.

  • Leveraging Neural Caption Translation with Visually Grounded Paraphrase Augmentation

    Johanes EFFENDI  Sakriani SAKTI  Katsuhito SUDOH  Satoshi NAKAMURA  

     
    PAPER-Natural Language Processing

      Pubricized:
    2019/11/25
      Vol:
    E103-D No:3
      Page(s):
    674-683

    Since a concept can be represented by different vocabularies, styles, and levels of detail, a translation task resembles a many-to-many mapping task from a distribution of sentences in the source language into a distribution of sentences in the target language. This viewpoint, however, is not fully implemented in current neural machine translation (NMT), which is one-to-one sentence mapping. In this study, we represent the distribution itself as multiple paraphrase sentences, which will enrich the model context understanding and trigger it to produce numerous hypotheses. We use a visually grounded paraphrase (VGP), which uses images as a constraint of the concept in paraphrasing, to guarantee that the created paraphrases are within the intended distribution. In this way, our method can also be considered as incorporating image information into NMT without using the image itself. We implement this idea by crowdsourcing a paraphrasing corpus that realizes VGP and construct neural paraphrasing that behaves as expert models in a NMT. Our experimental results reveal that our proposed VGP augmentation strategies showed improvement against a vanilla NMT baseline.

  • An Efficient Learning Algorithm for Regular Pattern Languages Using One Positive Example and a Linear Number of Membership Queries

    Satoshi MATSUMOTO  Tomoyuki UCHIDA  Takayoshi SHOUDAI  Yusuke SUZUKI  Tetsuhiro MIYAHARA  

     
    PAPER

      Pubricized:
    2019/12/23
      Vol:
    E103-D No:3
      Page(s):
    526-539

    A regular pattern is a string consisting of constant symbols and distinct variable symbols. The language of a regular pattern is the set of all constant strings obtained by replacing all variable symbols in the regular pattern with non-empty strings. The present paper deals with the learning problem of languages of regular patterns within Angluin's query learning model, which is an established mathematical model of learning via queries in computational learning theory. The class of languages of regular patterns was known to be identifiable from one positive example using a polynomial number of membership queries, in the query learning model. In present paper, we show that the class of languages of regular patterns is identifiable from one positive example using a linear number of membership queries, with respect to the length of the positive example.

  • Simultaneous Estimation of Object Region and Depth in Participating Media Using a ToF Camera

    Yuki FUJIMURA  Motoharu SONOGASHIRA  Masaaki IIYAMA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2019/12/03
      Vol:
    E103-D No:3
      Page(s):
    660-673

    Three-dimensional (3D) reconstruction and scene depth estimation from 2-dimensional (2D) images are major tasks in computer vision. However, using conventional 3D reconstruction techniques gets challenging in participating media such as murky water, fog, or smoke. We have developed a method that uses a continuous-wave time-of-flight (ToF) camera to estimate an object region and depth in participating media simultaneously. The scattered light observed by the camera is saturated, so it does not depend on the scene depth. In addition, received signals bouncing off distant points are negligible due to light attenuation, and thus the observation of such a point contains only a scattering component. These phenomena enable us to estimate the scattering component in an object region from a background that only contains the scattering component. The problem is formulated as robust estimation where the object region is regarded as outliers, and it enables the simultaneous estimation of an object region and depth on the basis of an iteratively reweighted least squares (IRLS) optimization scheme. We demonstrate the effectiveness of the proposed method using captured images from a ToF camera in real foggy scenes and evaluate the applicability with synthesized data.

  • Neural Machine Translation with Target-Attention Model

    Mingming YANG  Min ZHANG  Kehai CHEN  Rui WANG  Tiejun ZHAO  

     
    PAPER-Natural Language Processing

      Pubricized:
    2019/11/26
      Vol:
    E103-D No:3
      Page(s):
    684-694

    Attention mechanism, which selectively focuses on source-side information to learn a context vector for generating target words, has been shown to be an effective method for neural machine translation (NMT). In fact, generating target words depends on not only the source-side information but also the target-side information. Although the vanilla NMT can acquire target-side information implicitly by recurrent neural networks (RNN), RNN cannot adequately capture the global relationship between target-side words. To solve this problem, this paper proposes a novel target-attention approach to capture this information, thus enhancing target word predictions in NMT. Specifically, we propose three variants of target-attention model to directly obtain the global relationship among target words: 1) a forward target-attention model that uses a target attention mechanism to incorporate previous historical target words into the prediction of the current target word; 2) a reverse target-attention model that adopts a reverse RNN model to obtain the entire reverse target words information, and then to combine with source context information to generate target sequence; 3) a bidirectional target-attention model that combines the forward target-attention model and reverse target-attention model together, which can make full use of target words to further improve the performance of NMT. Our methods can be integrated into both RNN based NMT and self-attention based NMT, and help NMT get global target-side information to improve translation performance. Experiments on the NIST Chinese-to-English and the WMT English-to-German translation tasks show that the proposed models achieve significant improvements over state-of-the-art baselines.

1621-1640hit(18690hit)