The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

1741-1760hit(18690hit)

  • Achievable Rate Regions for Source Coding with Delayed Partial Side Information Open Access

    Tetsunao MATSUTA  Tomohiko UYEMATSU  

     
    PAPER-Shannon Theory

      Vol:
    E102-A No:12
      Page(s):
    1631-1641

    In this paper, we consider a source coding with side information partially used at the decoder through a codeword. We assume that there exists a relative delay (or gap) of the correlation between the source sequence and side information. We also assume that the delay is unknown but the maximum of possible delays is known to two encoders and the decoder, where we allow the maximum of delays to change by the block length. In this source coding, we give an inner bound and an outer bound on the achievable rate region, where the achievable rate region is the set of rate pairs of encoders such that the decoding error probability vanishes as the block length tends to infinity. Furthermore, we clarify that the inner bound coincides with the outer bound when the maximum of delays for the block length converges to a constant.

  • Packet-Oriented Erasure Correcting Codes by Bit-Level Shift Operation and Exclusive OR

    Yuta HANAKI  Takayuki NOZAKI  

     
    PAPER-Erasure Correction

      Vol:
    E102-A No:12
      Page(s):
    1622-1630

    This paper constructs packet-oriented erasure correcting codes and their systematic forms for the distributed storage systems. The proposed codes are encoded by exclusive OR and bit-level shift operation. By the shift operation, the encoded packets are slightly longer than the source packets. This paper evaluates the extra length of the encoded packets, called overhead, and shows that the proposed codes have smaller overheads than the zigzag decodable codes, which are existing codes using bit-level shift operation and exclusive OR.

  • Authenticated-Encrypted Analog-to-Digital Conversion Based on Non-Linearity and Redundancy Transformation

    Vinod V. GADDE  Makoto IKEDA  

     
    PAPER

      Vol:
    E102-A No:12
      Page(s):
    1731-1740

    We have proposed a generic architecture that can integrate the aspects of confidentiality and integrity into the A/D conversion framework. A conceptual account of the development of the proposed architecture is presented. Using the principle of this architecture we have presented a CMOS circuit design to facilitate a fully integrated Authenticated-Encrypted ADC (AE-ADC). We have implemented and demonstrated a partial 8-bit ADC Analog Front End of this proposed circuit in 0.18µm CMOS with an ENOB of 7.64 bits.

  • Target-Adapted Subspace Learning for Cross-Corpus Speech Emotion Recognition

    Xiuzhen CHEN  Xiaoyan ZHOU  Cheng LU  Yuan ZONG  Wenming ZHENG  Chuangao TANG  

     
    LETTER-Speech and Hearing

      Pubricized:
    2019/08/26
      Vol:
    E102-D No:12
      Page(s):
    2632-2636

    For cross-corpus speech emotion recognition (SER), how to obtain effective feature representation for the discrepancy elimination of feature distributions between source and target domains is a crucial issue. In this paper, we propose a Target-adapted Subspace Learning (TaSL) method for cross-corpus SER. The TaSL method trys to find a projection subspace, where the feature regress the label more accurately and the gap of feature distributions in target and source domains is bridged effectively. Then, in order to obtain more optimal projection matrix, ℓ1 norm and ℓ2,1 norm penalty terms are added to different regularization terms, respectively. Finally, we conduct extensive experiments on three public corpuses, EmoDB, eNTERFACE and AFEW 4.0. The experimental results show that our proposed method can achieve better performance compared with the state-of-the-art methods in the cross-corpus SER tasks.

  • Hybrid QAM-Based Labels Generated by Two Multi-Level PSK Codes

    Takahiro KODAMA  Gabriella CINCOTTI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2019/05/31
      Vol:
    E102-B No:12
      Page(s):
    2199-2204

    Hybrid 200Gchip/s QAM-based opto-electrical labels with high orthogonality are generated using the convolution of optical 16-level and electrical 4-level PSK codes. The combined simultaneous use of optical and electrical encoding increases system flexibility and code orthogonality, as well as code recognition performance. By performing 50 G-class low-speed LN-PM-based electrical processing on the 200 Gchip/s PSK-based optical code labels generated by a multiport optical encoder, the value of PCR indicating the code orthogonality is increased significantly, and the receiver sensitivity is improved by 0.5dB to achieve LER =10-9 in the next-generation optical packet switching networks.

  • Memory Efficient Load Balancing for Distributed Large-Scale Volume Rendering Using a Two-Layered Group Structure

    Marcus WALLDEN  Stefano MARKIDIS  Masao OKITA  Fumihiko INO  

     
    PAPER-Computer Graphics

      Pubricized:
    2019/09/09
      Vol:
    E102-D No:12
      Page(s):
    2306-2316

    We propose a novel compositing pipeline and a dynamic load balancing technique for volume rendering which utilizes a two-layered group structure to achieve effective and scalable load balancing. The technique enables each process to render data from non-contiguous regions of the volume with minimal impact on the total render time. We demonstrate the effectiveness of the proposed technique by performing a set of experiments on a modern GPU cluster. The experiments show that using the technique results in up to a 35.7% lower worst-case memory usage as compared to a dynamic k-d tree load balancing technique, whilst simultaneously achieving similar or higher render performance. The proposed technique was also able to lower the amount of transferred data during the load balancing stage by up to 72.2%. The technique has the potential to be used in many scenarios where other dynamic load balancing techniques have proved to be inadequate, such as during large-scale visualization.

  • Transferring Adaptive Bit Rate Streaming Quality Models from H.264/HD to H.265/4K-UHD Open Access

    Pierre LEBRETON  Kazuhisa YAMAGISHI  

     
    PAPER-Network

      Pubricized:
    2019/06/25
      Vol:
    E102-B No:12
      Page(s):
    2226-2242

    In this paper the quality of adaptive bit rate video streaming is investigated and two state-of-the-art models, i.e., the NTT audiovisual quality-estimation and ITU-T P.1203 models, are considered. This paper shows how these models can be applied to new conditions, e.g., 4K ultra high definition (4K-UHD) videos encoded using H.265, considering that they were originally designed and trained for HD videos encoded with H.264. Six subjective evaluations involving up to 192 participants and a large variety of test conditions, e.g., durations from 10sec to 3min, coding-quality variation, and stalling events, were conducted on both TV and mobile devices. Using the subjective data, this paper addresses how models and coefficients can be transferred to new conditions. A comparison between state-of-the-art models is conducted, showing the performance of transferred and retrained models. It is found that other video-quality estimation models, such as VMAF, can be used as input of the NTT and ITU-T P.1203 long-term pooling modules, allowing these other video-quality-estimation models to support the specificities of adaptive bit-rate-streaming scenarios. Finally, all retrained coefficients are detailed in this paper allowing future work to directly reuse the results of this study.

  • 3D Global and Multi-View Local Features Combination Based Qualitative Action Recognition for Volleyball Game Analysis

    Xina CHENG  Yang LIU  Takeshi IKENAGA  

     
    PAPER-Image

      Vol:
    E102-A No:12
      Page(s):
    1891-1899

    Volleyball video analysis plays important roles in providing data for TV contents and developing strategies. Among all the topics of volleyball analysis, qualitative player action recognition is essential because it potentially provides not only the action that being performed but also the quality, which means how well the action is performed. However, most action recognition researches focus on the discrimination between different actions. The quality of an action, which is helpful for evaluation and training of the player skill, has only received little attention so far. The vital problems in qualitative action recognition include occlusion, small inter-class difference and various kinds of appearance caused by the player change. This paper proposes a 3D global and multi-view local features combination based recognition framework with global team formation feature, ball state feature and abrupt pose features. The above problems are solved by the combination of 3D global features (which hide the unstable and incomplete 2D motion feature caused by occlusion) and the multi-view local features (which get detailed local motion features of body parts in multiple viewpoints). Firstly, the team formation extracts the 3D trajectories from the whole team members rather than a single target player. This proposal focuses more on the entire feature while eliminating the personal effect. Secondly, the ball motion state feature extracts features from the 3D ball trajectory. The ball motion is not affected by the personal appearance, so this proposal ignores the influence of the players appearance and makes it more robust to target player change. At last, the abrupt pose feature consists of two parts: the abrupt hit frame pose (which extracts the contour shape of the player's pose at the hit time) and abrupt pose variation (which extracts the pose variation between the preparation pose and ending pose during the action). These two features make difference of each action quality more distinguishable by focusing on the motion standard and stability between different quality actions. Experiments are conducted on game videos from the Semifinal and Final Game of 2014 Japan Inter High School Games of Men's Volleyball in Tokyo Metropolitan Gymnasium. The experimental results show the accuracy achieves 97.26%, improving 11.33% for action discrimination and 91.76%, and improving 13.72% for action quality evaluation.

  • Distributed Transmission for Secure Wireless Links Based on a Secret-Sharing Method

    Masaaki YAMANAKA  ShenCong WEI  Jingbo ZOU  Shuichi OHNO  Shinichi MIYAMOTO  Seiichi SAMPEI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/06/17
      Vol:
    E102-B No:12
      Page(s):
    2286-2296

    This paper proposes a secure distributed transmission method that establishes multiple transmission routes in space to a destination. In the method, the transmitted information is divided into pieces of information by a secret-sharing method, and the generated pieces are separately transmitted to the destination through different transmission routes using individually-controlled antenna directivities. As the secret-sharing method can divide the transmitted information into pieces in such a manner that nothing about the original information is revealed unless all the divided pieces are obtained, the secrecy of the transmitted information is greatly improved from an information-theoretic basis. However, one problem is that it does not perform well in the vicinity around the receiver. This is due to the characteristics of distributed transmission that all distributed pieces of information must eventually gather at the destination; an eavesdropper can obtain the necessary pieces to reconstruct the original information. Then, this paper expands the distributed transmission method into a two-way communication scheme. By adopting the distributed transmission in both communication directions, a secure link can be provided as a feedback channel to enhance the secrecy of the transmitted information. The generation of the shared pieces of information is given with signal forms, and the secrecy of the proposed method is evaluated based on the signal transmission error rates as determined by computer simulation.

  • Maximizing Lifetime of Data-Gathering Sensor Trees in Wireless Sensor Networks

    Hiroshi MATSUURA  

     
    PAPER-Network

      Pubricized:
    2019/06/10
      Vol:
    E102-B No:12
      Page(s):
    2205-2217

    Sensor-data gathering using multi-hop connections in a wireless sensor network is being widely used, and a tree topology for data gathering is considered promising because it eases data aggregation. Therefore, many sensor-tree-creation algorithms have been proposed. The sensors in a tree, however, generally run on batteries, so long tree lifetime is one of the most important factors in collecting sensor data from a tree over a long period. It has been proven that creating the longest-lifetime tree is a non-deterministic-polynomial complete problem; thus, all previously proposed sensor-tree-creation algorithms are heuristic. To evaluate a heuristic algorithm, the time complexity of the algorithm is very important, as well as the quantitative evaluation of the lifetimes of the created trees and algorithm speed. This paper proposes an algorithm called assured switching with accurate graph optimization (ASAGAO) that can create a sensor tree with a much longer lifetime much faster than other sensor-tree-creation algorithms. In addition, it has much smaller time complexity.

  • User Transition Pattern Analysis for Travel Route Recommendation

    Junjie SUN  Chenyi ZHUANG  Qiang MA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/09/06
      Vol:
    E102-D No:12
      Page(s):
    2472-2484

    A travel route recommendation service that recommends a sequence of points of interest for tourists traveling in an unfamiliar city is a very useful tool in the field of location-based social networks. Although there are many web services and mobile applications that can help tourists to plan their trips by providing information about sightseeing attractions, travel route recommendation services are still not widely applied. One reason could be that most of the previous studies that addressed this task were based on the orienteering problem model, which mainly focuses on the estimation of a user-location relation (for example, a user preference). This assumes that a user receives a reward by visiting a point of interest and the travel route is recommended by maximizing the total rewards from visiting those locations. However, a location-location relation, which we introduce as a transition pattern in this paper, implies useful information such as visiting order and can help to improve the quality of travel route recommendations. To this end, we propose a travel route recommendation method by combining location and transition knowledge, which assigns rewards for both locations and transitions.

  • A Hue-Preserving Tone Mapping Scheme Based on Constant-Hue Plane Without Gamut Problem

    Yuma KINOSHITA  Kouki SEO  Artit VISAVAKITCHAROEN  Hitoshi KIYA  

     
    PAPER-Image

      Vol:
    E102-A No:12
      Page(s):
    1865-1871

    We propose a novel hue-preserving tone mapping scheme. Various tone mapping operations have been studied so far, but there are very few works on color distortion caused in image tone mapping. First, LDR images produced from HDR ones by using conventional tone mapping operators (TMOs) are pointed out to have some distortion in hue values due to clipping and rounding quantization processing. Next,we propose a novel method which allows LDR images to have the same maximally saturated color values as those of HDR ones. Generated LDR images by the proposed method have smaller hue degradation than LDR ones generated by conventional TMOs. Moreover, the proposed method is applicable to any TMOs. In an experiment, the proposed method is demonstrated not only to produce images with small hue degradation but also to maintain well-mapped luminance, in terms of three objective metrics: TMQI, hue value in CIEDE2000, and the maximally saturated color on the constant-hue plane in the RGB color space.

  • Sampling Shape Contours Using Optimization over a Geometric Graph

    Kazuya OSE  Kazunori IWATA  Nobuo SUEMATSU  

     
    PAPER-Pattern Recognition

      Pubricized:
    2019/09/11
      Vol:
    E102-D No:12
      Page(s):
    2547-2556

    Consider selecting points on a contour in the x-y plane. In shape analysis, this is frequently referred to as contour sampling. It is important to select the points such that they effectively represent the shape of the contour. Generally, the stroke order and number of strokes are informative for that purpose. Several effective methods exist for sampling contours drawn with a certain stroke order and number of strokes, such as the English alphabet or Arabic figures. However, many contours entail an uncertain stroke order and number of strokes, such as pictures of symbols, and little research has focused on methods for sampling such contours. This is because selecting the points in this case typically requires a large computational cost to check all the possible choices. In this paper, we present a sampling method that is useful regardless of whether the contours are drawn with a certain stroke order and number of strokes or not. Our sampling method thereby expands the application possibilities of contour processing. We formulate contour sampling as a discrete optimization problem that can be solved using a type of direct search. Based on a geometric graph whose vertices are the points and whose edges form rectangles, we construct an effective objective function for the problem. Using different shape datasets, we demonstrate that our sampling method is effective with respect to shape representation and retrieval.

  • Adversarial Domain Adaptation Network for Semantic Role Classification

    Haitong YANG  Guangyou ZHOU  Tingting HE  Maoxi LI  

     
    PAPER-Natural Language Processing

      Pubricized:
    2019/09/02
      Vol:
    E102-D No:12
      Page(s):
    2587-2594

    In this paper, we study domain adaptation of semantic role classification. Most systems utilize the supervised method for semantic role classification. But, these methods often suffer severe performance drops on out-of-domain test data. The reason for the performance drops is that there are giant feature differences between source and target domain. This paper proposes a framework called Adversarial Domain Adaption Network (ADAN) to relieve domain adaption of semantic role classification. The idea behind our method is that the proposed framework can derive domain-invariant features via adversarial learning and narrow down the gap between source and target feature space. To evaluate our method, we conduct experiments on English portion in the CoNLL 2009 shared task. Experimental results show that our method can largely reduce the performance drop on out-of-domain test data.

  • Distributed Mutually Referenced Equalization

    Yoshiki SUGITANI  Wataru YAMAMOTO  Teruyuki MIYAJIMA  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:12
      Page(s):
    1997-2000

    We propose a distributed blind equalization method for wireless sensor networks, in which a source sends data and each node performs time-domain equalization to estimate the data from a received signal that is affected by inter-symbol interference. The equalization can be performed distributively based on the mutually referenced equalization principle. Even if the nodes in the network are not fully connected to each other, the average consensus technique enables us to perform the equalization of all channels.

  • Analysis and Investigation of Frame Invariance and Particle Behavior for Piecewise-Linear Particle Swarm Optimizer

    Tomoyuki SASAKI  Hidehiro NAKANO  

     
    PAPER-Nonlinear Problems

      Vol:
    E102-A No:12
      Page(s):
    1956-1967

    Particle swarm optimization (PSO) is a swarm intelligence algorithm and has good search performance and simplicity in implementation. Because of its properties, PSO has been applied to various optimization problems. However, the search performance of the classical PSO (CPSO) depends on reference frame of solution spaces for each objective function. CPSO is an invariant algorithm through translation and scale changes to reference frame of solution spaces but is a rotationally variant algorithm. As such, the search performance of CPSO is worse in solving rotated problems than in solving non-rotated problems. In the reference frame invariance, the search performance of an optimization algorithm is independent on rotation, translation, or scale changes to reference frame of solution spaces, which is a property of preferred optimization algorithms. In our previous study, piecewise-linear particle swarm optimizer (PPSO) has been proposed, which is effective in solving rotated problems. Because PPSO particles can move in solution spaces freely without depending on the coordinate systems, PPSO algorithm may have rotational invariance. However, theoretical analysis of reference frame invariance of PPSO has not been done. In addition, although behavior of each particle depends on PPSO parameters, good parameter conditions in solving various optimization problems have not been sufficiently clarified. In this paper, we analyze the reference frame invariance of PPSO theoretically, and investigated whether or not PPSO is invariant under reference frame alteration. We clarify that control parameters of PPSO which affect movement of each particle and performance of PPSO through numerical simulations.

  • Accelerating the Smith-Waterman Algorithm Using the Bitwise Parallel Bulk Computation Technique on the GPU

    Takahiro NISHIMURA  Jacir Luiz BORDIM  Yasuaki ITO  Koji NAKANO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2019/07/09
      Vol:
    E102-D No:12
      Page(s):
    2400-2408

    The bulk execution of a sequential algorithm is to execute it for many different inputs in turn or at the same time. It is known that the bulk execution of an oblivious sequential algorithm can be implemented to run efficiently on a GPU. The bulk execution supports fine grained bitwise parallelism, allowing it to achieve high acceleration over a straightforward sequential computation. The main contribution of this work is to present a Bitwise Parallel Bulk Computation (BPBC) to accelerate the Smith-Waterman Algorithm (SWA) using the affine gap penalty. Thus, our idea is to convert this computation into a circuit simulation using the BPBC technique to compute multiple instances simultaneously. The proposed BPBC technique for the SWA has been implemented on the GPU and CPU. Experimental results show that the proposed BPBC for the SWA accelerates the computation by over 646 times as compared to a single CPU implementation and by 6.9 times as compared to a multi-core CPU implementation with 160 threads.

  • Discrimination between Genuine and Cloned Gait Silhouette Videos via Autoencoder-Based Training Data Generation

    Yuki HIROSE  Kazuaki NAKAMURA  Naoko NITTA  Noboru BABAGUCHI  

     
    PAPER-Pattern Recognition

      Pubricized:
    2019/09/06
      Vol:
    E102-D No:12
      Page(s):
    2535-2546

    Spoofing attacks are one of the biggest concerns for most biometric recognition systems. This will be also the case with silhouette-based gait recognition in the near future. So far, gait recognition has been fortunately out of the scope of spoofing attacks. However, it is becoming a real threat with the rapid growth and spread of deep neural network-based multimedia generation techniques, which will allow attackers to generate a fake video of gait silhouettes resembling a target person's walking motion. We refer to such computer-generated fake silhouettes as gait silhouette clones (GSCs). To deal with the future threat caused by GSCs, in this paper, we propose a supervised method for discriminating GSCs from genuine gait silhouettes (GGSs) that are observed from actual walking people. For training a good discriminator, it is important to collect training datasets of both GGSs and GSCs which do not differ from each other in any aspect other than genuineness. To this end, we propose to generate a training set of GSCs from GGSs by transforming them using multiple autoencoders. The generated GSCs are used together with their original GGSs for training the discriminator. In our experiments, the proposed method achieved the recognition accuracy of up to 94% for several test datasets, which demonstrates the effectiveness and the generality of the proposed method.

  • Empirical Study on Improvements to Software Engineering Competences Using FLOSS

    Neunghoe KIM  Jongwook JEONG  Mansoo HWANG  

     
    LETTER

      Pubricized:
    2019/09/24
      Vol:
    E102-D No:12
      Page(s):
    2433-2434

    Free/libre open source software (FLOSS) are being rapidly employed in several companies and organizations, because it can be modified and used for free. Hence, the use of FLOSS could contribute to its originally intended benefits and to the competence of its users. In this study, we analyzed the effect of using FLOSS on related competences. We investigated the change in the competences through an empirical study before and after the use of FLOSS among project participants. Consequently, it was confirmed that the competences of the participants improved after utilizing FLOSS.

  • CAWBT: NVM-Based B+Tree Index Structure Using Cache Line Sized Atomic Write

    Dokeun LEE  Seongjin LEE  Youjip WON  

     
    PAPER-Software System

      Pubricized:
    2019/09/12
      Vol:
    E102-D No:12
      Page(s):
    2441-2450

    Indexing is one of the fields where the non-volatile memory (NVM) has the advantages of byte-addressable characteristics and fast read/write speed. The existing index structures for NVM have been developed based on the fact that the size of cache line and the atomicity guarantee unit of NVM are different and they tried to overcome the weakness of consistency from the difference. To overcome the weakness, an expensive flush operation is required which results in a lower performance than a basic B+tree index. Recent studies have shown that the I/O units of the NVM can be matched with the atomicity guarantee units under limited circumstances. In this paper, we propose a Cache line sized Atomic Write B+tree (CAWBT), which is a minimal B+tree structure that shows higher performance than a basic b+ tree and designed for NVM. CAWBT has almost same performance compared to basic B+tree without consistency guarantee and shows remarkable performance improvement compared to other B+tree indexes for NVM.

1741-1760hit(18690hit)