The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

3381-3400hit(20498hit)

  • Community Discovery on Multi-View Social Networks via Joint Regularized Nonnegative Matrix Triple Factorization

    Liangliang ZHANG  Longqi YANG  Yong GONG  Zhisong PAN  Yanyan ZHANG  Guyu HU  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/03/21
      Vol:
    E100-D No:6
      Page(s):
    1262-1270

    In multi-view social networks field, a flexible Nonnegative Matrix Factorization (NMF) based framework is proposed which integrates multi-view relation data and feature data for community discovery. Benefit with a relaxed pairwise regularization and a novel orthogonal regularization, it outperforms the-state-of-art algorithms on five real-world datasets in terms of accuracy and NMI.

  • Formal Verification-Based Redundancy Identification of Transition Faults with Broadside Scan Tests

    Hiroshi IWATA  Nanami KATAYAMA  Ken'ichi YAMAGUCHI  

     
    PAPER-Formal techniques

      Pubricized:
    2017/03/07
      Vol:
    E100-D No:6
      Page(s):
    1182-1189

    In accordance with Moore's law, recent design issues include shortening of time-to-market and detection of delay faults. Several studies with respect to formal techniques have examined the first issue. Using the equivalence checking, it is possible to identify whether large circuits are equivalent or not in a practical time frame. With respect to the latter issue, it is difficult to achieve 100% fault efficiency even for transition faults in full scan designs. This study involved proposing a redundant transition fault identification method using equivalence checking. The main concept of the proposed algorithm involved combining the following two known techniques, 1. modeling of a transition fault as a stuck-at fault with temporal expansion and 2. detection of a stuck-at fault by using equivalence checking tools. The experimental results indicated that the proposed redundant identification method using a formal approach achieved 100% fault efficiency for all benchmark circuits in a practical time even if a commercial ATPG tool was unable to achieve 100% fault efficiency for several circuits.

  • Design and Implementation of a Test Program for Benchmarking DNS64 Servers Open Access

    Gábor LENCSE  Dániel BAKAI  

     
    POSITION PAPER-Internet

      Pubricized:
    2016/12/16
      Vol:
    E100-B No:6
      Page(s):
    948-954

    A new Internet Draft on benchmarking methodologies for IPv6 transition technologies including DNS64 was adopted by the Benchmarking Working Group of IETF. The aim of our effort is to design and implement a test program that complies with the draft and thus to create the world's first standard DNS64 benchmarking tool. In this paper, we disclose our design considerations and high-level implementation decisions. The precision of our special timing method is tested and found to be excellent. Due to the prudent design, the performance of our test program is also excellent: it can send more than 200,000 AAAA record requests using a single core of a desktop computer with a 3.2GHz Intel Core i5-4570 CPU. Its operation comprises all the functionalities required by the draft including checking the timeliness and validity of the answers of the tested DNS64 server. Our DNS64 benchmarking program, dns64perf++, is distributed as free software under GNU GPL v2 license for the benefit of the research, benchmarking and networking communities.

  • Experimental Study on CDMA GaAs HBT MMIC Power Amplifier Layout Design for Reducing Turn-On Delay in Transient Response

    Kazuya YAMAMOTO  Miyo MIYASHITA  Takayuki MATSUZUKA  Tomoyuki ASADA  Kazunobu FUJII  Satoshi SUZUKI  Teruyuki SHIMURA  Hiroaki SEKI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E100-C No:6
      Page(s):
    618-631

    This paper describes, for the first time, an experimental study on the layout design considerations of GaAs HBT MMIC switchable-amplifier-chain-based power amplifiers (SWPAs) for CDMA handsets. The transient response of the quiescent current and output power (Pout) in GaAs HBT power amplifiers that consist of a main chain and a sub-chain is often affected by a thermal coupling between power stages and their bias circuits in the same chain or a thermal coupling between power stages and/or their bias circuits in different chains. In particular, excessively strong thermal coupling inside the MMIC SWPA causes failure in 3GPP-compliant inner loop power control tests. An experimental study reveals that both the preheating in the main/sub-chains and appropriate thermal coupling inside the main chain are very effective in reducing the turn-on delay for the two-parallel-amplifier-chain topology; for example, i) the sub-power stage is arranged near the main power stage, ii) the sub-driver stage is placed near the main driver stage and iii) the main driver bias circuit is placed near the main power stage and the sub-power stage. The SWPA operating in Band 9 (1749.9 to 1784.9 MHz), which was designed and fabricated from the foregoing considerations, shows a remarkable improvement in the Pout turn-on delay: a reduced power level error of 0.74 dB from turn-off to turn-on in the sub-amplifier chain and a reduced power level error of over 0.30 dB from turn-off to turn-on in the main amplifier chain. The main RF power measurements conducted with a 3.4-V supply voltage and a Band 9 WCDMA HSDPA modulated signal are as follows. The SWPA delivers a Pout of 28.5 dBm, a power gain (Gp) of 28 dB, and a PAE of 39% while restricting the ACLR1 to less than -40 dBc in the main amplifier chain. In the sub-amplifier chain, 17 dBm of Pout, 23.5 dB of Gp, and 27% of PAE are obtained at the same ACLR1 level.

  • Image Quality Assessment Based on Multi-Order Local Features Description, Modeling and Quantification

    Yong DING  Xinyu ZHAO  Zhi ZHANG  Hang DAI  

     
    PAPER-Pattern Recognition

      Pubricized:
    2017/03/16
      Vol:
    E100-D No:6
      Page(s):
    1303-1315

    Image quality assessment (IQA) plays an important role in quality monitoring, evaluation and optimization for image processing systems. However, current quality-aware feature extraction methods for IQA can hardly balance accuracy and complexity. This paper introduces multi-order local description into image quality assessment for feature extraction. The first-order structure derivative and high-order discriminative information are integrated into local pattern representation to serve as the quality-aware features. Then joint distributions of the local pattern representation are modeled by spatially enhanced histogram. Finally, the image quality degradation is estimated by quantifying the divergence between such distributions of the reference image and those of the distorted image. Experimental results demonstrate that the proposed method outperforms other state-of-the-art approaches in consideration of not only accuracy that is consistent with human subjective evaluation, but also robustness and stability across different distortion types and various public databases. It provides a promising choice for image quality assessment development.

  • License Plate Detection and Character Segmentation Using Adaptive Binarization Based on Superpixels under Illumination Change

    Daehun KIM  Bonhwa KU  David K. HAN  Hanseok KO  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2017/02/22
      Vol:
    E100-D No:6
      Page(s):
    1384-1387

    In this paper, an algorithm is proposed for license plate recognition (LPR) in video traffic surveillance applications. In an LPR system, the primary steps are license plate detection and character segmentation. However, in practice, false alarms often occur due to images of vehicle parts that are similar in appearance to a license plate or detection rate degradation due to local illumination changes. To alleviate these difficulties, the proposed license plate segmentation employs an adaptive binarization using a superpixel-based local contrast measurement. From the binarization, we apply a set of rules to a sequence of characters in a sub-image region to determine whether it is part of a license plate. This process is effective in reducing false alarms and improving detection rates. Our experimental results demonstrate a significant improvement over conventional methods.

  • A Novel Memory-Based Radix-2 Fast Walsh-Hadamard-Fourier Transform Architecture

    Qianjian XING  Zhenguo MA  Feng YU  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:6
      Page(s):
    1333-1337

    This letter presents a novel memory-based architecture for radix-2 fast Walsh-Hadamard-Fourier transform (FWFT) based on the constant geometry FWFT algorithm. It is composed of a multi-function Processing Engine, a conflict-free memory addressing scheme and an efficient twiddle factor generator. The address for memory access and the control signals for stride permutation are formulated in detail and the methods can be applied to other memory-based FFT-like architectures.

  • Image Modification Based on Spatial Frequency Components for Visual Attention Retargeting

    Hironori TAKIMOTO  Syuhei HITOMI  Hitoshi YAMAUCHI  Mitsuyoshi KISHIHARA  Kensuke OKUBO  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2017/03/15
      Vol:
    E100-D No:6
      Page(s):
    1339-1349

    It is estimated that 80% of the information entering the human brain is obtained through the eyes. Therefore, it is commonly believed that drawing human attention to particular objects is effective in assisting human activities. In this paper, we propose a novel image modification method for guiding user attention to specific regions of interest by using a novel saliency map model based on spatial frequency components. We modify the frequency components on the basis of the obtained saliency map to decrease the visual saliency outside the specified region. By applying our modification method to an image, human attention can be guided to the specified region because the saliency inside the region is higher than that outside the region. Using gaze measurements, we show that the proposed saliency map matches well with the distribution of actual human attention. Moreover, we evaluate the effectiveness of the proposed modification method by using an eye tracking system.

  • A New Multiple Group Cosegmentation Model by Proposal Selection Strategy

    Yin ZHU  Fanman MENG  Jian XIONG  Guan GUI  

     
    LETTER-Image

      Vol:
    E100-A No:6
      Page(s):
    1358-1361

    Multiple image group cosegmentation (MGC) aims at segmenting common object from multiple group of images, which is a new cosegmentation research topic. The existing MGC methods formulate MGC as label assignment problem (Markov Random Field framework), which is observed to be sensitive to parameter setting. Meanwhile, it is also observed that large object variations and complicated backgrounds dramatically decrease the existing MGC performance. To this end, we propose a new object proposal based MGC model, with the aim of avoiding tedious parameter setting, and improving MGC performance. Our main idea is to formulate MGC as new region proposal selection task. A new energy function in term of proposal is proposed. Two aspects such as the foreground consistency within each single image group, and the group consistency among image groups are considered. The energy minimization method is designed in EM framework. Two steps such as the loop belief propagation and foreground propagation are iteratively implemented for the minimization. We verify our method on ICoseg dataset. Six existing cosegmentation methods are used for the comparison. The experimental results demonstrate that the proposed method can not only improve MGC performance in terms of larger IOU values, but is also robust to the parameter setting.

  • Tensorial Kernel Based on Spatial Structure Information for Neuroimaging Classification

    YingJiang WU  BenYong LIU  

     
    LETTER-Pattern Recognition

      Pubricized:
    2017/02/23
      Vol:
    E100-D No:6
      Page(s):
    1380-1383

    Recently, a high dimensional classification framework has been proposed to introduce spatial structure information in classical single kernel support vector machine optimization scheme for brain image analysis. However, during the construction of spatial kernel in this framework, a huge adjacency matrix is adopted to determine the adjacency relation between each pair of voxels and thus it leads to very high computational complexity in the spatial kernel calculation. The method is improved in this manuscript by a new construction of tensorial kernel wherein a 3-order tensor is adopted to preserve the adjacency relation so that calculation of the above huge matrix is avoided, and hence the computational complexity is significantly reduced. The improvement is verified by experimental results on classification of Alzheimer patients and cognitively normal controls.

  • Stimulator Design of Retinal Prosthesis Open Access

    Jun OHTA  Toshihiko NODA  Kenzo SHODO  Yasuo TERASAWA  Makito HARUTA  Kiyotaka SASAGAWA  Takashi TOKUDA  

     
    INVITED PAPER

      Vol:
    E100-C No:6
      Page(s):
    523-528

    This study focuses on the design of electrical stimulator for retinal prosthesis. The stimulator must be designed such that the occurrence of electrolysis or any irreversible process in the electrodes and flexible lead is prevented in order to achieve safe stimulation over long periods using the large number of electrodes. Some types of biphasic current pulse circuits, charge balance circuits, and AC power delivery circuits were developed to address this issue. Electronic circuitry must be introduced in the stimulator to achieve the large number of electrodes required to obtain high quality of vision. The concept of a smart electrode, in which a microchip is embedded inside an electrode, is presented for future retinal prostheses with over 1000 electrodes.

  • Inferring Phylogenetic Network of Malware Families Based on Splits Graph

    Jing LIU  Yuan WANG  Pei Dai XIE  Yong Jun WANG  

     
    LETTER-Information Network

      Pubricized:
    2017/03/22
      Vol:
    E100-D No:6
      Page(s):
    1368-1371

    Malware phylogeny refers to inferring the evolutionary relationships among instances of a family. It plays an important role in malware forensics. Previous works mainly focused on tree-based model. However, trees cannot represent reticulate events, such as inheriting code fragments from different parents, which are common in variants generation. Therefore, phylogenetic networks as a more accurate and general model have been put forward. In this paper, we propose a novel malware phylogenetic network construction method based on splits graph, taking advantage of the one-to-one correspondence between reticulate events and netted components in splits graph. We evaluate our algorithm on three malware families and two benign families whose ground truth are known and compare with competing algorithms. Experiments demonstrate that our method achieves a higher mean accuracy of 64.8%.

  • Coverage-Based Clustering and Scheduling Approach for Test Case Prioritization

    Wenhao FU  Huiqun YU  Guisheng FAN  Xiang JI  

     
    PAPER-Software Engineering

      Pubricized:
    2017/03/03
      Vol:
    E100-D No:6
      Page(s):
    1218-1230

    Regression testing is essential for assuring the quality of a software product. Because rerunning all test cases in regression testing may be impractical under limited resources, test case prioritization is a feasible solution to optimize regression testing by reordering test cases for the current testing version. In this paper, we propose a novel test case prioritization approach that combines the clustering algorithm and the scheduling algorithm for improving the effectiveness of regression testing. By using the clustering algorithm, test cases with same or similar properties are merged into a cluster, and the scheduling algorithm helps allocate an execution priority for each test case by incorporating fault detection rates with the waiting time of test cases in candidate set. We have conducted several experiments on 12 C programs to validate the effectiveness of our proposed approach. Experimental results show that our approach is more effective than some well studied test case prioritization techniques in terms of average percentage of fault detected (APFD) values.

  • Low-Complexity Angle Estimation for Noncircular Signals in Bistatic MIMO Radar

    Yiduo GUO  Weike FENG  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2016/12/12
      Vol:
    E100-B No:6
      Page(s):
    997-1002

    A novel real-valued ESPRIT (RV-ESPRIT) algorithm is proposed to estimate the direction of arrival (DOA) and direction of departure (DOD) for noncircular signals in bistatic MIMO radar. By exploiting the property of signal noncircularity and Euler's formula, a new virtual array data of bistatic MIMO radar, which is twice that of the MIMO virtual array data, is established with real-valued sine and cosine data. Then the receiving/transmitting selective matrices are constructed to obtain the receiving/transmitting rotationally invariant factors. Compared to the existing angle estimation methods, the proposed algorithm has lower computational load. Simulation results confirm the effectiveness of the RV-ESPRIT.

  • Illumination Normalization for Face Recognition Using Energy Minimization Framework

    Xiaoguang TU  Feng YANG  Mei XIE  Zheng MA  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/03/10
      Vol:
    E100-D No:6
      Page(s):
    1376-1379

    Numerous methods have been developed to handle lighting variations in the preprocessing step of face recognition. However, most of them only use the high-frequency information (edges, lines, corner, etc.) for recognition, as pixels lied in these areas have higher local variance values, and thus insensitive to illumination variations. In this case, information of low-frequency may be discarded and some of the features which are helpful for recognition may be ignored. In this paper, we present a new and efficient method for illumination normalization using an energy minimization framework. The proposed method aims to remove the illumination field of the observed face images while simultaneously preserving the intrinsic facial features. The normalized face image and illumination field could be achieved by a reciprocal iteration scheme. Experiments on CMU-PIE and the Extended Yale B databases show that the proposed method can preserve a very good visual quality even on the images illuminated with deep shadow and high brightness regions, and obtain promising illumination normalization results for better face recognition performance.

  • Image Sensors Meet LEDs Open Access

    Koji KAMAKURA  

     
    INVITED PAPER-Wireless Communication Technologies

      Pubricized:
    2016/12/14
      Vol:
    E100-B No:6
      Page(s):
    917-925

    A new class of visible light communication (VLC) systems, namely image sensor (IS) based VLC systems, has emerged. An IS consists of a two-dimensional (2D) array of photodetectors (PDs), and then VLC systems with an IS receiver are capable of exploiting the spatial dimensions invoked for transmitting information. This paper aims for providing a brief survey of topics related to the IS-based VLC, and then provides a matrix representation of how to map a series of one dimensional (1D) symbols onto a set of 2D symbols for efficiently exploit the associate grade of freedom offered by 2D VLC systems. As an example, the matrix representation is applied to the symbol mapping of layered space-time coding (L-STC), which is presented to enlarge the coverage of IS-based VLC that is limited by pixel resolution of ISs.

  • Effective Indoor Localization and 3D Point Registration Based on Plane Matching Initialization

    Dongchen ZHU  Ziran XING  Jiamao LI  Yuzhang GU  Xiaolin ZHANG  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2017/03/08
      Vol:
    E100-D No:6
      Page(s):
    1316-1324

    Effective indoor localization is the essential part of VR (Virtual Reality) and AR (Augmented Reality) technologies. Tracking the RGB-D camera becomes more popular since it can capture the relatively accurate color and depth information at the same time. With the recovered colorful point cloud, the traditional ICP (Iterative Closest Point) algorithm can be used to estimate the camera poses and reconstruct the scene. However, many works focus on improving ICP for processing the general scene and ignore the practical significance of effective initialization under the specific conditions, such as the indoor scene for VR or AR. In this work, a novel indoor prior based initialization method has been proposed to estimate the initial motion for ICP algorithm. We introduce the generation process of colorful point cloud at first, and then introduce the camera rotation initialization method for ICP in detail. A fast region growing based method is used to detect planes in an indoor frame. After we merge those small planes and pick up the two biggest unparallel ones in each frame, a novel rotation estimation method can be employed for the adjacent frames. We evaluate the effectiveness of our method by means of qualitative observation of reconstruction result because of the lack of the ground truth. Experimental results show that our method can not only fix the failure cases, but also can reduce the ICP iteration steps significantly.

  • Heart Rate Measurement Based on Event Timing Coding Observed by Video Camera

    Takashi G. SATO  Yoshifumi SHIRAKI  Takehiro MORIYA  

     
    PAPER-Sensing

      Pubricized:
    2016/12/14
      Vol:
    E100-B No:6
      Page(s):
    926-931

    The purpose of this study was to examine an efficient interval encoding method with a slow-frame-rate image sensor, and show that the encoding can work to capture heart rates from multiple persons. Visible light communication (VLC) with an image sensor is a powerful method for obtaining data from sensors distributed in the field with their positional information. However, the capturing speed of the camera is usually not fast enough to transfer interval information like the heart rate. To overcome this problem, we have developed an event timing (ET) encoding method. In ET encoding, sensor units detect the occurrence of heart beat event and send their timing through a sequence of flashing lights. The first flash signal provides the rough timing and subsequent signals give the precise timing. Our theoretical analysis shows that in most cases the ET encoding method performs better than simple encoding methods. Heart rate transfer from multiple persons was examined as an example of the method's capabilities. In the experimental setup, the developed system successfully monitored heart rates from several participants.

  • Verifying Scenarios of Proximity-Based Federations among Smart Objects through Model Checking and Its Advantages

    Reona MINODA  Shin-ichi MINATO  

     
    PAPER-Formal techniques

      Pubricized:
    2017/03/07
      Vol:
    E100-D No:6
      Page(s):
    1172-1181

    This paper proposes a formal approach of verifying ubiquitous computing application scenarios. Ubiquitous computing application scenarios assume that there are a lot of devices and physical things with computation and communication capabilities, which are called smart objects, and these are interacted with each other. Each of these interactions among smart objects is called “federation”, and these federations form a ubiquitous computing application scenario. Previously, Yuzuru Tanaka proposed “a proximity-based federation model among smart objects”, which is intended for liberating ubiquitous computing from stereotyped application scenarios. However, there are still challenges to establish the verification method of this model. This paper proposes a verification method of this model through model checking. Model checking is one of the most popular formal verification approach and it is often used in various fields of industry. Model checking is conducted using a Kripke structure which is a formal state transition model. We introduce a context catalytic reaction network (CCRN) to handle this federation model as a formal state transition model. We also give an algorithm to transform a CCRN into a Kripke structure and we conduct a case study of ubiquitous computing scenario verification, using this algorithm and the model checking. Finally, we discuss the advantages of our formal approach by showing the difficulties of our target problem experimentally.

  • On the Single-Parity Locally Repairable Codes

    Yanbo LU  Jie HAO  Shu-Tao XIA  

     
    LETTER-Coding Theory

      Vol:
    E100-A No:6
      Page(s):
    1342-1345

    Locally repairable codes (LRCs) have attracted much interest recently due to their applications in distributed storage systems. In an [n,k,d] linear code, a code symbol is said to have locality r if it can be repaired by accessing at most r other code symbols. An (n,k,r) LRC with locality r for the information symbols has minimum distance d≤n-k-⌈k/r⌉+2. In this letter, we study single-parity LRCs where every repair group contains exactly one parity symbol. Firstly, we give a new characterization of single-parity LRCs based on the standard form of generator matrices. For the optimal single-parity LRCs meeting the Singleton-like bound, we give necessary conditions on the structures of generator matrices. Then we construct all the optimal binary single-parity LRCs meeting the Singleton-like bound d≤n-k-⌈k/r⌉+2.

3381-3400hit(20498hit)