The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

5501-5520hit(20498hit)

  • A Novel Adaptive Interference Admission Control Method for Layered Partially Non-orthogonal Block Diagonalization for Base Station Cooperative MIMO

    Yusuke OSHIMA  Anass BENJEBBOUR  Kenichi HIGUCHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:1
      Page(s):
    155-163

    This paper proposes a novel method for adaptively controlling the admission of interference to users in our previously proposed layered partially non-orthogonal block diagonalization (BD) precoding method for downlink multiuser multiple-input multiple-output (MIMO) transmission that employs cooperation among multiple base stations (BSs). The proposed method is applicable when some of the instantaneous channel state information (CSI) feedback between the user equipment and the respective BSs is missing if the path loss between the user equipment and BS is higher than a predetermined threshold. The proposed method suppresses the loss in the transmitter diversity (beam forming) gain caused by the perfect nulling of inter-user interference in BD. By allowing the inter-user interference from a link that has a high average path loss, the overall throughput performance of simple BD is enhanced. We show that the combination of layered transmission that restricts the set of BSs used for the signal transmission and adaptive control of interference admission significantly increases the throughput of BS cooperative multiuser MIMO with partial CSI feedback.

  • Implementation of an Elliptic Curve Scalar Multiplication Method Using Division Polynomials

    Naoki KANAYAMA  Yang LIU  Eiji OKAMOTO  Kazutaka SAITO  Tadanori TERUYA  Shigenori UCHIYAMA  

     
    LETTER

      Vol:
    E97-A No:1
      Page(s):
    300-302

    We implemented a scalar multiplication method over elliptic curves using division polynomials. We adapt an algorithm for computing elliptic nets proposed by Stange. According to our experimental results, the scalar multiplication method using division polynomials is faster than the binary method in an affine coordinate system.

  • A CAM-Based Information Detection Hardware System for Fast Image Matching on FPGA

    Duc-Hung LE  Tran-Bao-Thuong CAO  Katsumi INOUE  Cong-Kha PHAM  

     
    PAPER-Electronic Circuits

      Vol:
    E97-C No:1
      Page(s):
    65-76

    In this paper, the authors present a CAM-based Information Detection Hardware System for fast, exact and approximate image matching on 2-D data, using FPGA. The proposed system can be potentially applied to fast image matching with various required search patterns, without using search principles. In designing the system, we take advantage of Content Addressable Memory (CAM) which has parallel multi-match mode capability and has been designed, using dual-port RAM blocks. The system has a simple structure, and does not employ any Central Processor Unit (CPU) or complicated computations.

  • Cross-Talk with Fluctuation in Heterogeneous Multicore Fibers

    Takeshi SUGIMORI  Katsunori IMAMURA  Ryuichi SUGIZAKI  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E97-B No:1
      Page(s):
    40-48

    Prediction of cross-talk is an important facet of multicore fiber (MCF) design. Several approaches for estimating cross-talk in MCF have been proposed but none are faultless, especially when applied to MCF with heterogeneous cores. We propose a new calculation approach that attempts to solve this problem. In our approach, cross-talk in multicore fibers is estimated by coupled power theory. The coefficients in the coupled power equation are theoretically calculated by the central limit theorem and by quantum mechanical time-dependent perturbations. The results from our calculations agree with those of Monte Carlo simulations of heterogeneous MCFs.

  • Single Symbol Decodable QO-STBC with Full Diversity

    Naotoshi YODA  Chang-Jun AHN  Ken-ya HASHIMOTO  

     
    PAPER-Foundations

      Vol:
    E97-A No:1
      Page(s):
    2-6

    Space-time block code (STBC) with complex orthogonal designs achieves full diversity with a simple maximum-likelihood (ML) decoding, however, do not achieve a full transmission rate for more than two antennas. To attain a higher transmission rate, STBC with quasi-orthogonal designs were proposed, whereas there are interference terms caused by relaxing the orthogonality. It has an impact on decoding complexity because a receiver needs to decode two symbols at a time. Moreover, QO-STBC does not achieve full diversity. In this paper, we propose a scheme which makes possible to decode symbols one by one, and two schemes which gain full transmission diversity by upsetting the balance of the transmit power and rotating constellation.

  • Sentence-Level Combination of Machine Translation Outputs with Syntactically Hybridized Translations

    Bo WANG  Yuanyuan ZHANG  Qian XU  

     
    LETTER-Natural Language Processing

      Vol:
    E97-D No:1
      Page(s):
    164-167

    We describe a novel idea to improve machine translation by combining multiple candidate translations and extra translations. Without manual work, extra translations can be generated by identifying and hybridizing the syntactic equivalents in candidate translations. Candidate and extra translations are then combined on sentence level for better general translation performance.

  • A Note on Pcodes of Partial Words

    Tetsuo MORIYA  Itaru KATAOKA  

     
    LETTER-Fundamentals of Information Systems

      Vol:
    E97-D No:1
      Page(s):
    139-141

    In this paper, we study partial words in relation with pcodes, compatibility, and containment. First, we introduce C⊂(L), the set of all partial words contained by elements of L, and C⊃(L), the set of all partial words containing elements of L, for a set L of partial words. We discuss the relation between C(L), the set of all partial words compatible with elements of the set L, C⊂(L), and C⊃(L). Next, we consider the condition for C(L), C⊂(L), and C⊃(L) to be a pcode when L is a pcode. Furthermore, we introduce some classes of pcodes. An infix pcode and a comma-free pcode are defined, and the inclusion relation among these classes is established.

  • RONoC: A Reconfigurable Architecture for Application-Specific Optical Network-on-Chip

    Huaxi GU  Zheng CHEN  Yintang YANG  Hui DING  

     
    LETTER-Computer System

      Vol:
    E97-D No:1
      Page(s):
    142-145

    Optical Network-on-Chip (ONoC) is a promising emerging technology, which can solve the bottlenecks faced by electrical on-chip interconnection. However, the existing proposals of ONoC are mostly built on fixed topologies, which are not flexible enough to support various applications. To make full use of the limited resource and provide a more efficient approach for resource allocation, RONoC (Reconfigurable Optical Network-on-Chip) is proposed in this letter. The topology can be reconfigured to meet the requirement of different applications. An 8×8 nonblocking router is also designed, together with the communication mechanism. The simulation results show that the saturation load of RONoC is 2 times better than mesh, and the energy consumption is 25% lower than mesh.

  • A Sparse Modeling Method Based on Reduction of Cost Function in Regularized Forward Selection

    Katsuyuki HAGIWARA  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E97-D No:1
      Page(s):
    98-106

    Regularized forward selection is viewed as a method for obtaining a sparse representation in a nonparametric regression problem. In regularized forward selection, regression output is represented by a weighted sum of several significant basis functions that are selected from among a large number of candidates by using a greedy training procedure in terms of a regularized cost function and applying an appropriate model selection method. In this paper, we propose a model selection method in regularized forward selection. For the purpose, we focus on the reduction of a cost function, which is brought by appending a new basis function in a greedy training procedure. We first clarify a bias and variance decomposition of the cost reduction and then derive a probabilistic upper bound for the variance of the cost reduction under some conditions. The derived upper bound reflects an essential feature of the greedy training procedure; i.e., it selects a basis function which maximally reduces the cost function. We then propose a thresholding method for determining significant basis functions by applying the derived upper bound as a threshold level and effectively combining it with the leave-one-out cross validation method. Several numerical experiments show that generalization performance of the proposed method is comparable to that of the other methods while the number of basis functions selected by the proposed method is greatly smaller than by the other methods. We can therefore say that the proposed method is able to yield a sparse representation while keeping a relatively good generalization performance. Moreover, our method has an advantage that it is free from a selection of a regularization parameter.

  • Analysis of the Network Gains of SISO and MISO Single Frequency Network Broadcast Systems

    Sungho JEON  Jong-Seob BAEK  Junghyun KIM  Jong-Soo SEO  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E97-B No:1
      Page(s):
    182-189

    The second generation digital terrestrial broadcasting system (DVB-T2) is the first broadcasting system employing MISO (Multiple-Input Single-Output) algorithms. The potential MISO gain of this system has been roughly predicted through simulations and field tests. Of course, the potential MISO SFN gain (MISO-SFNG) differs according to the simulation conditions, test methods, and measurement environments. In this paper, network gains of SISO-SFN and MISO-SFN are theoretically derived. Such network gains are also analyzed with respect to the receive power imbalance and coverage distances of SISO and MISO SFN. From the analysis, it is proven that MISO-SFNG is always larger than SISO SFN gain (SISO-SFNG) in terms of the achievable SNR. Further, both MISO-SFNG and SISO-SFNG depend on the power imbalance, but the network gains are constant regardless of the modulation order. Once the field strength of the complete SFN is obtained by coverage planning tools or field measurements, the SFN service coverage can be precisely calibrated by applying the closed-form SFNG formula.

  • Fast DFRFT Robust Watermarking Algorithm Based on the Arnold Scrambling and OFDM Coding

    Wenkao YANG  Jing GUO  Enquan LI  

     
    PAPER-Multimedia Systems for Communications

      Vol:
    E97-B No:1
      Page(s):
    218-225

    Combining the strong anti-interference advantages of OFDM technology and the time-frequency analysis features of fractional Fourier transform (FFT), we apply OFDM as the coding modulation technology for digital watermarking. Based on the Arnold scrambling and OFDM coding, an innovative DFRFT digital watermarking algorithm is proposed. First, the watermark information is subjected to the Arnold scrambling encryption and OFDM coding transform. Then it is embedded into the FFT domain amplitude. The three parameters of scrambling iterations number, t, FFT order, p, and the watermark information embedded position, L, are used as keys, so that the algorithm has high safety. A simulation shows that the algorithm is highly robust against noise, filtering, compression, and other general attacks. The algorithm not only has strong security, but also makes a good balance between invisibility and robustness. But the possibility of using OFDM technique in robust image watermarking has drawn a very little attention.

  • Cryptanalysis of 249-, 250-, ..., 256-Bit Key HyRAL via Equivalent Keys

    Yuki ASANO  Shingo YANAGIHARA  Tetsu IWATA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E97-A No:1
      Page(s):
    371-383

    HyRAL is a blockcipher whose block size is 128bits, and it supports the key lengths of 128, 129, ..., 256bits. The cipher was proposed for the CRYPTREC project, and previous analyses did not identify any security weaknesses. In this paper, we first consider the longest key version, 256-bit key HyRAL, and present the analysis in terms of equivalent keys. We first show that there are 251.0 equivalent keys (or 250.0 pairs of equivalent keys). Next, we propose an algorithm that derives an instance of equivalent keys with the expected time complexity of 248.8 encryptions and a limited amount of memory. Finally, we implement the proposed algorithm and fully verify its correctness by showing several instances of equivalent keys. We then consider shorter key lengths, and show that there are equivalent keys in 249-, 250-, ..., 255-bit key HyRAL. For each of these key lengths, we present the expected time complexity to derive an instance of equivalent keys.

  • Zero-Sum Defender: Fast and Space-Efficient Defense against Return-Oriented Programming Attacks

    Jeehong KIM  Inhyeok KIM  Changwoo MIN  Young Ik EOM  

     
    LETTER

      Vol:
    E97-A No:1
      Page(s):
    303-305

    Recently, return-oriented programming (ROP) attacks have been rapidly increasing. In this letter, we introduce a fast and space-efficient defense technique, called zero-sum defender, that can respond against general ROP attacks. Our technique generates additional codes, at compile time, just before return instructions to check whether the execution has been abused by ROP attacks. We achieve very low runtime overhead with very small increase in file size. In our experimental results, performance overhead is 1.7%, and file size overhead is 4.5%.

  • Handoff Delay-Based Call Admission Control in Cognitive Radio Networks

    Ling WANG  Qicong PENG  Qihang PENG  

     
    PAPER-Network

      Vol:
    E97-B No:1
      Page(s):
    49-55

    In this paper, we investigate how to achieve call admission control (CAC) for guaranteeing call dropping probability QoS which is caused by handoff timeout in cognitive radio (CR) networks. When primary user (PU) appears, spectrum handoff should be initiated to maintain secondary user (SU)'s link. We propose a novel virtual queuing (VQ) scheme to schedule spectrum handoff requests sent by multiple SUs. Unlike the conventional first-come-first-served (FCFS) scheduling, resuming transmission in the original channel has higher priority than switching to another channel. It costs less because it avoids the cost of signaling frequent spectrum switches. We characterize the handoff delay on the effect of PU's behavior and the number of SUs in CR networks. And user capacity under certain QoS requirement is derived as a guideline for CAC. The analytical results show that call dropping performance can be greatly improved by CAC when a large amount of SUs arrives fast as well as the VQ scheme is verified to reduce handoff cost compared to existing methods.

  • Investigation on Frequency Diversity Effects of Various Transmission Schemes Using Frequency Domain Equalizer for DFT-Precoded OFDMA

    Lianjun DENG  Teruo KAWAMURA  Hidekazu TAOKA  Mamoru SAWAHASHI  

     
    PAPER-Foundations

      Vol:
    E97-A No:1
      Page(s):
    30-39

    This paper presents frequency diversity effects of localized transmission, clustered transmission, and intra-subframe frequency hopping (FH) using a frequency domain equalizer (FDE) for discrete Fourier transform (DFT)-precoded Orthogonal Frequency Division Multiple Access (OFDMA). In the evaluations, we employ the normalized frequency mean square covariance (NFMSV) as a measure of the frequency diversity effect, i.e., randomization level of the frequency domain interleaving associated with turbo coding. Link-level computer simulation results show that frequency diversity is very effective in decreasing the required average received signal-to-noise power ratio (SNR) at the target average block error rate (BLER) using a linear minimum mean-square error (LMMSE) based FDE according to the increase in the entire transmission bandwidth for DFT-precoded OFDMA. Moreover, we show that the NFMSV is an accurate measure of the frequency diversity effect for the 3 transmission schemes for DFT-precoded OFDMA. We also clarify the frequency diversity effects of the 3 transmission schemes from the viewpoint of the required average received SNR satisfying the target average BLER for the various key radio parameters for DFT-precoded OFDMA in frequency-selective Rayleigh fading channels.

  • Cryptanalyses on a Merkle-Damgård Based MAC — Almost Universal Forgery and Distinguishing-H Attacks

    Yu SASAKI  

     
    PAPER-Symmetric Key Based Cryptography

      Vol:
    E97-A No:1
      Page(s):
    167-176

    This paper presents two types of cryptanalysis on a Merkle-Damgård hash based MAC, which computes a MAC value of a message M by Hash(K||l||M) with a shared key K and the message length l. This construction is often called LPMAC. Firstly, we present a distinguishing-H attack against LPMAC instantiated with any narrow-pipe Merkle-Damgård hash function with O(2n/2) queries, which indicates the incorrectness of the widely believed assumption that LPMAC instantiated with a secure hash function should resist the distinguishing-H attack up to 2n queries. In fact, all of the previous distinguishing-H attacks considered dedicated attacks depending on the underlying hash algorithm, and most of the cases, reduced rounds were attacked with a complexity between 2n/2 and 2n. Because it works in generic, our attack updates these results, namely full rounds are attacked with O(2n/2) complexity. Secondly, we show that an even stronger attack, which is a powerful form of an almost universal forgery attack, can be performed on LPMAC. In this setting, attackers can modify the first several message-blocks of a given message and aim to recover an internal state and forge the MAC value. For any narrow-pipe Merkle-Damgård hash function, our attack can be performed with O(2n/2) queries. These results show that the length prepending scheme is not enough to achieve a secure MAC.

  • Pattern Reconstruction for Deviated AUT in Spherical Measurement by Using Spherical Waves

    Yang MIAO  Jun-ichi TAKADA  

     
    PAPER-Antennas and Propagation

      Vol:
    E97-B No:1
      Page(s):
    105-113

    To characterize an antenna, the acquisition of its three-dimensional radiation pattern is the fundamental requirement. Spherical antenna measurement is a practical approach to measuring antenna patterns in spherical geometry. However, due to the limitations of measurement range and measurement time, the measured samples may either be incomplete on scanning sphere, or be inadequate in terms of the sampling interval. Therefore there is a need to extrapolate and interpolate the measured samples. Spherical wave expansion, whose band-limited property is derived from the sampling theorem, provides a good tool for reconstructing antenna patterns. This research identifies the limitation of the conventional algorithm when reconstructing the pattern of an antenna which is not located at the coordinate origin of the measurement set-up. A novel algorithm is proposed to overcome the limitation by resampling between the unprimed and primed (where the antenna is centred) coordinate systems. The resampling of measured samples from the unprimed coordinate to the primed coordinate can be conducted by translational phase shift, and the resampling of reconstructed pattern from the primed coordinate back to the unprimed coordinate can be accomplished by rotation and translation of spherical waves. The proposed algorithm enables the analytical and continuous pattern reconstruction, even under the severe sampling condition for deviated AUT. Numerical investigations are conducted to validate the proposed algorithm.

  • Analysis of Blacklist Update Frequency for Countering Malware Attacks on Websites

    Takeshi YAGI  Junichi MURAYAMA  Takeo HARIU  Sho TSUGAWA  Hiroyuki OHSAKI  Masayuki MURATA  

     
    PAPER-Internet

      Vol:
    E97-B No:1
      Page(s):
    76-86

    We proposes a method for determining the frequency for monitoring the activities of a malware download site used for malware attacks on websites. In recent years, there has been an increase in attacks exploiting vulnerabilities in web applications for infecting websites with malware and maliciously using those websites as attack platforms. One scheme for countering such attacks is to blacklist malware download sites and filter out access to them from user websites. However, a malware download site is often constructed through the use of an ordinary website that has been maliciously manipulated by an attacker. Once the malware has been deleted from the malware download site, this scheme must be able to unblacklist that site to prevent normal user websites from being falsely detected as malware download sites. However, if a malware download site is frequently monitored for the presence of malware, the attacker may sense this monitoring and relocate that malware on a different site. This means that an attack will not be detected until the newly generated malware download site is discovered. In response to these problems, we clarify the change in attack-detection accuracy caused by attacker behavior. This is done by modeling attacker behavior, specifying a state-transition model with respect to the blacklisting of a malware download site, and analyzing these models with synthetically generated attack patterns and measured attack patterns in an operation network. From this analysis, we derive the optimal monitoring frequency that maximizes the true detection rate while minimizing the false detection rate.

  • Doppler Shift Based Target Localization Using Semidefinite Relaxation

    Yan Shen DU  Ping WEI  Wan Chun LI  Hong Shu LIAO  

     
    LETTER-Digital Signal Processing

      Vol:
    E97-A No:1
      Page(s):
    397-400

    We propose a novel approach to the target localization problem using Doppler frequency shift measurements. We first reformulate the maximum likelihood estimation (MLE) as a constrained weighted least squares (CWLS) estimation, and then perform the semidefinite relaxation to relax the CWLS problem as a convex semidefinite programming (SDP) problem, which can be efficiently solved using modern convex optimization methods. Finally, the SDP solution can be used to initialize the original MLE which can provide estimates achieve the Cramer-Rao lower bound accuracy. Simulations corroborate the good performance of the proposed method.

  • Optimal Transform Order of Fractional Fourier Transform for Decomposition of Overlapping Ultrasonic Signals

    Zhenkun LU  Cui YANG  Gang WEI  

     
    LETTER-Ultrasonics

      Vol:
    E97-A No:1
      Page(s):
    393-396

    The separation time-overlapping ultrasound signals is necessary to obtain accurate estimate of transit time and material properties. In this letter, a method to determine the optimal transform order of fractional Fourier transform (FRFT) for decomposition of overlapping ultrasonic signals is proposed. The optimal transform order is obtained by minimizing the mean square error (MSE) between the output and the reference signal. Furthermore, windowing in FRFT domain is discussed. Numerical simulation results show the performances of the proposed method in separating signals overlapping in time.

5501-5520hit(20498hit)