The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

5461-5480hit(20498hit)

  • A Web Page Segmentation Approach Using Visual Semantics

    Jun ZENG  Brendan FLANAGAN  Sachio HIROKAWA  Eisuke ITO  

     
    PAPER-Data Engineering, Web Information Systems

      Vol:
    E97-D No:2
      Page(s):
    223-230

    Web page segmentation has a variety of benefits and potential web applications. Early techniques of web page segmentation are mainly based on machine learning algorithms and rule-based heuristics, which cannot be used for large-scale page segmentation. In this paper, we propose a formulated page segmentation method using visual semantics. Instead of analyzing the visual cues of web pages, this method utilizes three measures to formulate the visual semantics: layout tree is used to recognize the visual similar blocks; seam degree is used to describe how neatly the blocks are arranged; content similarity is used to describe the content coherent degree between blocks. A comparison experiment was done using the VIPS algorithm as a baseline. Experiment results show that the proposed method can divide a Web page into appropriate semantic segments.

  • An Efficient Compression of Amplitude-Only Images for the Image Trading System

    Shenchuan LIU  Wannida SAE-TANG  Masaaki FUJIYOSHI  Hitoshi KIYA  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E97-D No:2
      Page(s):
    378-379

    This letter proposes an efficient compression scheme for the copyright- and privacy-protected image trading system. The proposed scheme multiplies pseudo random signs to amplitude components of discrete cosine transformed coefficients before the inverse transformation is applied. The proposed scheme efficiently compresses amplitude-only image which is the inversely transformed amplitude components, and the scheme simultaneously improves the compression efficiency of phase-only image which is the inversely transformed phase components, in comparison with the conventional systems.

  • A New Family of Optimal Ternary Cyclic Codes

    Shuxia MA  Hongling ZHANG  Weidong JIN  Xianhua NIU  

     
    LETTER-Coding Theory

      Vol:
    E97-A No:2
      Page(s):
    690-693

    Cyclic codes are a subclass of linear codes and have applications in consumer electronics, data storage systems, and communication systems as they have efficient encoding and decoding algorithms compared with the linear block codes. The objective of this letter is to present a new family of ternary cyclic codes with parameters [3m-1,3m-1-2m,4], where m is an odd integer. The proposed cyclic codes are optimal in the sense that their parameters meet the Sphere Packing bound.

  • Optimal Channel-Sensing Scheme for Cognitive Radio Systems Based on Fuzzy Q-Learning

    Fereidoun H. PANAHI  Tomoaki OHTSUKI  

     
    PAPER

      Vol:
    E97-B No:2
      Page(s):
    283-294

    In a cognitive radio (CR) network, the channel sensing scheme used to detect the existence of a primary user (PU) directly affects the performances of both CR and PU. However, in practical systems, the CR is prone to sensing errors due to the inefficiency of the sensing scheme. This may yield primary user interference and low system performance. In this paper, we present a learning-based scheme for channel sensing in CR networks. Specifically, we formulate the channel sensing problem as a partially observable Markov decision process (POMDP), where the most likely channel state is derived by a learning process called Fuzzy Q-Learning (FQL). The optimal policy is derived by solving the problem. Simulation results show the effectiveness and efficiency of our proposed scheme.

  • Closed Form Expressions of Balanced Realizations of Second-Order Analog Filters

    Shunsuke YAMAKI  Masahide ABE  Masayuki KAWAMATA  

     
    PAPER-Digital Signal Processing

      Vol:
    E97-A No:2
      Page(s):
    565-571

    This paper derives the balanced realizations of second-order analog filters directly from the transfer function. Second-order analog filters are categorized into the following three cases: complex conjugate poles, distinct real poles, and multiple real poles. For each case, simple formulas are derived for the synthesis of the balanced realizations of second-order analog filters. As a result, we obtain closed form expressions of the balanced realizations of second-order analog filters.

  • Ghost Reduction for Multiple Angle Sensors Based on Tracking Process by Dual Hypotheses

    Kosuke MARUYAMA  Hiroshi KAMEDA  

     
    PAPER-Sensing

      Vol:
    E97-B No:2
      Page(s):
    504-511

    A ghost reduction algorithm for multiple angle sensors tracking objects under dual hypotheses is proposed. When multiple sensors and multiple objects exist on the same plane, the conventional method is unable to distinguish the real objects and ghosts from all possible pairs of measurement angle vectors. In order to resolve the issue stated above, the proposed algorithm utilizes tracking process considering dual hypotheses of real objects and ghosts behaviors. The proposed algorithm predicts dynamics of all the intersections of measurement angle vector pairs with the hypotheses of real objects and ghosts. Each hypothesis is evaluated by the residuals between prediction data and intersection. The appropriate hypothesis is extracted trough several data sampling. Representative simulation results demonstrate the effectiveness of the proposed algorithm.

  • Resolution of the Gibbs Phenomenon for Fractional Fourier Series

    Hongqing ZHU  Meiyu DING  Daqi GAO  

     
    PAPER-Digital Signal Processing

      Vol:
    E97-A No:2
      Page(s):
    572-586

    The nth partial sums of a classical Fourier series have large oscillations near the jump discontinuities. This behaviour is the well-known Gibbs phenomenon. Recently, the inverse polynomial reconstruction method (IPRM) has been successfully implemented to reconstruct piecewise smooth functions by reducing the effects of the Gibbs phenomenon for Fourier series. This paper addresses the 2-D fractional Fourier series (FrFS) using the same approach used with the 1-D fractional Fourier series and finds that the Gibbs phenomenon will be observed in 1-D and 2-D fractional Fourier series expansions for functions at a jump discontinuity. The existing IPRM for resolution of the Gibbs phenomenon for 1-D and 2-D FrFS appears to be the same as that used for Fourier series. The proof of convergence provides theoretical basis for both 1-D and 2-D IPRM to remove Gibbs phenomenon. Several numerical examples are investigated. The results indicate that the IPRM method completely eliminates the Gibbs phenomenon and gives exact reconstruction results.

  • A Mode Mapping and Optimized MV Conjunction Based H.264/SVC to H.264/AVC Transcoder with Medium-Grain Quality Scalability for Videoconferencing

    Lei SUN  Zhenyu LIU  Takeshi IKENAGA  

     
    PAPER

      Vol:
    E97-A No:2
      Page(s):
    501-509

    Scalable Video Coding (SVC) is an extension of H.264/AVC, aiming to provide the ability to adapt to heterogeneous networks or requirements. It offers great flexibility for bitstream adaptation in multi-point applications such as videoconferencing. However, transcoding between SVC and AVC is necessary due to the existence of legacy AVC-based systems. The straightforward re-encoding method requires great computational cost, and delay-sensitive applications like videoconferencing require much faster transcoding scheme. This paper proposes a 3-stage fast SVC-to-AVC transcoder with medium-grain quality scalability (MGS) for videoconferencing applications. Hierarchical-P structured SVC bitstream is transcoded into IPPP structured AVC bitstream with multiple reference frames. In the first stage, mode decision is accelerated by proposed SVC-to-AVC mode mapping scheme. In the second stage, INTER motion estimation is accelerated by an optimized motion vector (MV) conjunction method to predict the MV with a reduced search range. In the last stage, hadamard-based all zero block (AZB) detection is utilized for early termination. Simulation results show that proposed transcoder achieves very similar coding efficiency to the optimal result, but with averagely 89.6% computational time saving.

  • Self-Triggered Predictive Control with Time-Dependent Activation Costs of Mixed Logical Dynamical Systems

    Shogo NAKAO  Toshimitsu USHIO  

     
    PAPER

      Vol:
    E97-A No:2
      Page(s):
    476-483

    Many controllers are implemented on digital platforms as periodic control tasks. But, in embedded systems, an amount of resources are limited and the reduction of resource utilization of the control task is an important issue. Recently, much attention has been paid to a self-triggered controller, which updates control inputs aperiodically. A control task by which the self-triggered controller is implemented skips the release of jobs if the degradation of control performances by the skipping can be allowed. Each job computes not only the updated control inputs but also the next update instant and the control task is in the sleep state until the instant. Thus the resource utilization is reduced. In this paper, we consider self-triggered predictive control (stPC) of mixed logical dynamical (MLD) systems. We introduce a binary variable which determines whether the control inputs are updated or not. Then, we formulate an stPC problem of mixed logical dynamical systems, where activation costs are time-dependent to represent the preference of activations of the control task. Both the control inputs and the next update instant are computed by solving a mixed integer programming problem. The proposed stPC can reduce the number of updates with guaranteeing stability of the controlled system.

  • Image Quality Assessment Based on Low Order Moment Features

    Leida LI  Hancheng ZHU  Gaobo YANG  

     
    LETTER

      Vol:
    E97-A No:2
      Page(s):
    538-542

    This letter presents a new image quality metric using low order discrete orthogonal moments. The moment features are extracted in a block manner and the relative moment differences (RMD) are computed. A new exponential function based on RMD is proposed to generate the quality score. The performance of the proposed method is evaluated on public databases. Experimental results and comparisons demonstrate the efficiency of the proposed method.

  • Movement Awareness-Adaptive Spatio Temporal Noise Reduction in Video

    Sangwoo AHN  Jongjoo PARK  Linbo LUO  Jongwha CHONG  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E97-D No:2
      Page(s):
    380-383

    In this letter, we present an efficient video matching-based denoising method. Two main issues are addressed in this paper: the matched points and the denoising algorithm based on an adaptive spatial temporal filter. Unlike previous algorithms, our method adaptively selects reference pixels within spatially and temporally neighboring frames. Our method uses more information about matched pixels on neighboring frames than other methods. Therefore, the proposal enhanced the accuracy of video denoising. Simulation results show that the proposed method produces cleaner and sharper images.

  • A Comparative Study among Three Automatic Gait Generation Methods for Quadruped Robots

    Kisung SEO  Soohwan HYUN  

     
    LETTER-Artificial Intelligence, Data Mining

      Vol:
    E97-D No:2
      Page(s):
    353-356

    This paper introduces a comparison of three automatic gait generation methods for quadruped robots: GA (Genetic Algorithm), GP (genetic programming) and CPG (Central Pattern Generator). It aims to provide a useful guideline for the selection of gait generation methods. GA-based approaches seek to optimize paw locus in Cartesian space. GP-based techniques generate joint trajectories using regression polynomials. The CPGs are neural circuits that generate oscillatory output from an input coming from the brain. Optimizations for the three proposed methods are executed and analyzed using a Webots simulation of the quadruped robot built by Bioloid. The experimental comparisons and analyses provided herein will be an informative guidance for research of gait generation method.

  • Fast and Accurate Architecture Exploration for High Performance and Low Energy VLIW Data-Path

    Ittetsu TANIGUCHI  Kohei AOKI  Hiroyuki TOMIYAMA  Praveen RAGHAVAN  Francky CATTHOOR  Masahiro FUKUI  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E97-A No:2
      Page(s):
    606-615

    A fast and accurate architecture exploration for high performance and low energy VLIW data-path is proposed. The main contribution is a method to find Pareto optimal FU structures, i.e., the optimal number of FUs and the best instruction assignment for each FU. The proposed architecture exploration method is based on GA and enables the effective exploration of vast solution space. Experimental results showed that proposed method was able to achieve fast and accurate architecture exploration. For most cases, the estimation error was less than 1%.

  • Performance Enhancements in MIL-STD-188-220-Based Tactical Communication Systems

    Sewon HAN  Byung-Seo KIM  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E97-A No:2
      Page(s):
    713-716

    MIL-STD-188-220 standard specifies protocols for narrowband and voice-based tactical communication devices. However, the future tactical communication devices require broadband services for accurate command and control. In this letter, the enhancement for MIL-STD-188-220-based systems is proposed for use over wideband channels. Unlike the operation defined in the standard, transmissions in Bump-Slots uses P-Persistence method and give the higher p to stations experiencing longer delays. The proposed method is extensively evaluated and the performance enhancements are proved.

  • Haptically Assisting Breast Tumor Detection by Augmenting Abnormal Lump

    Seokhee JEON  

     
    LETTER-Human-computer Interaction

      Vol:
    E97-D No:2
      Page(s):
    361-365

    This paper reports the use of haptic augmented reality in breast tumor palpation. In general, lumps in the breast are stiffer than surrounding tissues, allowing us to haptically detect them through self-palpation. The goal of the study is to assist self-palpation of lumps by haptically augmenting stiffness around lumps. The key steps are to estimate non-linear stiffness of normal tissues in the offline preprocessing step, detect areas that show abnormally stiffer responses, and amplify the difference in stiffness through a haptic augmented reality interface. The performance of the system was evaluated in a user-study, demonstrating the potential of the system.

  • Analytical Study for Performance Evaluation of Signal Detection Scheme to Allow the Coexistence of Additional and Existing Radio Communication Systems

    Kanshiro KASHIKI  I-Te LIN  Tomoki SADA  Toshihiko KOMINE  Shingo WATANABE  

     
    PAPER

      Vol:
    E97-B No:2
      Page(s):
    295-304

    This paper describes an analytical study of performance of a proposed signal detection scheme that will allow coexistence of an additional radio communication system (generally, secondary system) in the service area where the existing communication system (primary system) is operated. Its performance characteristics are derived by an analytical method based on stochastic theory, which is subsequently validated by software simulation. The main purpose of the detection scheme is to protect the primary system from the secondary system. In such a situation, the signals of the primary system and secondary system may be simultaneously received in the signal detector. One application of such a scheme is D-to-D (Device-to-Device) communication, whose system concept including the detection scheme is briefly introduced. For improved secondary signal detection, we propose the signal cancellation method of the primary system and the feature detection method of the secondary system signal. We evaluate the performance characteristics of the detection scheme in terms of “probability of correct detection”. We reveal that an undesired random component is produced in the feature detection procedure when two different signals are simultaneously received, which degrades the detection performance. Such undesired component is included in the analytical equations. We also clarify that the cancellation scheme improves the performance, when the power ratio of the primary signal to secondary signal is higher than 20-22dB.

  • Implementation and Performance Evaluation of a Distributed TV White Space Sensing System

    Ha-Nguyen TRAN  Yohannes D. ALEMSEGED  Hiroshi HARADA  

     
    PAPER

      Vol:
    E97-B No:2
      Page(s):
    305-313

    Spectrum sensing is one of the methods to identify available white spaces for secondary usage which was specified by the regulators. However, signal quality to be sensed can plunge to a very low signal-to-noise-ratio due to signal propagation and hence readings from individual sensors will be unreliable. Distributed sensing by the cooperation of multiple sensors is one way to cope with this problem because the diversity gain due to the combining effect of data captured at different position will assist in detecting signals that might otherwise not be detected by a single sensor. In effect, the probability of detection can be improved. We have implemented a distributed sensing system to evaluate the performance of different cooperative sensing algorithms. In this paper we describe our implementation and measurement experience which include the system design, specification of the system, measurement method, the issues and solutions. This paper also confirms the performance enhancement offered by distributed sensing algorithms, and describes several ideas for further enhancement of the sensing quality.

  • Local Reconstruction Error Alignment: A Fast Unsupervised Feature Selection Algorithm for Radar Target Clustering

    Jianqiao WANG  Yuehua LI  Jianfei CHEN  

     
    LETTER-Artificial Intelligence, Data Mining

      Vol:
    E97-D No:2
      Page(s):
    357-360

    Observed samples in wideband radar are always represented as nonlinear points in high dimensional space. In this paper, we consider the feature selection problem in the scenario of wideband radar target clustering. Inspired by manifold learning, we propose a novel feature selection algorithm, called Local Reconstruction Error Alignment (LREA), to select the features that can best preserve the underlying manifold structure. We first select the features that minimize the reconstruction error in every neighborhood. Then, we apply the alignment technique to extend the local optimal feature sequence to a global unique feature sequence. Experiments demonstrate the effectiveness of our proposed method.

  • Medium Access Control Design for Cognitive Radio Networks: A Survey

    Nhan NGUYEN-THANH  Anh T. PHAM  Van-Tam NGUYEN  

     
    PAPER

      Vol:
    E97-B No:2
      Page(s):
    359-374

    Designing a medium access control (MAC) protocol is a key for implementing any practical wireless network. In general, a MAC protocol is responsible for coordinating users in accessing spectrum resources. Given that a user in cognitive radio(CR) networks do not have priority in accessing spectrum resources, MAC protocols have to perform dynamic spectrum access (DSA) functions, including spectrum sensing, spectrum access, spectrum allocation, spectrum sharing and spectrum mobility, beside conventional control procedure. As a result, designing MAC protocols for CR networks requires more complicated consideration than that needed for conventional/primary wireless network. In this paper, we focus on two major perspectives related to the design of a CR-MAC protocol: dynamic spectrum access functions and network infrastructure. Five DSA functions are reviewed from the point of view of MAC protocol design. In addition, some important factors related to the infrastructure of a CR network including network architecture, control channel management, the number of radios in the CR device and the number of transmission data channels are also discussed. The remaining challenges and open research issues are addressed for future research to aim at obtaining practical CR-MAC protocols.

  • Cross-Lingual Phone Mapping for Large Vocabulary Speech Recognition of Under-Resourced Languages

    Van Hai DO  Xiong XIAO  Eng Siong CHNG  Haizhou LI  

     
    PAPER-Speech and Hearing

      Vol:
    E97-D No:2
      Page(s):
    285-295

    This paper presents a novel acoustic modeling technique of large vocabulary automatic speech recognition for under-resourced languages by leveraging well-trained acoustic models of other languages (called source languages). The idea is to use source language acoustic model to score the acoustic features of the target language, and then map these scores to the posteriors of the target phones using a classifier. The target phone posteriors are then used for decoding in the usual way of hybrid acoustic modeling. The motivation of such a strategy is that human languages usually share similar phone sets and hence it may be easier to predict the target phone posteriors from the scores generated by source language acoustic models than to train from scratch an under-resourced language acoustic model. The proposed method is evaluated using on the Aurora-4 task with less than 1 hour of training data. Two types of source language acoustic models are considered, i.e. hybrid HMM/MLP and conventional HMM/GMM models. In addition, we also use triphone tied states in the mapping. Our experimental results show that by leveraging well trained Malay and Hungarian acoustic models, we achieved 9.0% word error rate (WER) given 55 minutes of English training data. This is close to the WER of 7.9% obtained by using the full 15 hours of training data and much better than the WER of 14.4% obtained by conventional acoustic modeling techniques with the same 55 minutes of training data.

5461-5480hit(20498hit)