The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

5481-5500hit(20498hit)

  • Reduction Operators Based on Behavioral Inheritance for Timed Petri Nets

    Ichiro TOYOSHIMA  Shota NAKANO  Shingo YAMAGUCHI  

     
    LETTER

      Vol:
    E97-A No:2
      Page(s):
    484-489

    In this paper, we proposed reduction operators of timed Petri net for efficient model checking. Timed Petri nets are used widely for modeling and analyzing systems which include time concept. Analysis of the system can be done comprehensively with model checking, but there is a state-space explosion problem. Therefore, previous researchers proposed reduction methods and translation methods to timed automata to perform efficient model checking. However, there is no reduction method which consider observability and there is a trade-off between the amount of description and the size of state space. In this paper, first, we have defined a concept of timed behavioral inheritance. Next, we have proposed reduction operators of timed Petri nets based on timed behavioral inheritance. Then, we have applied our proposed operators to an artificial timed Petri net. Moreover, the results show that the reduction operators which consider observability can reduce the size of state space of the original timed Petri nets within the experiment.

  • Adaptive Thresholding Algorithm: Efficient Computation Technique Based on 2-D Intelligent Block Detection for Degraded Images

    Chia-Shao HUNG  Shanq-Jang RUAN  

     
    LETTER-Image

      Vol:
    E97-A No:2
      Page(s):
    717-718

    Image binarization refers to convert gray-level images into binary ones, and many binarization algorithms have been developed. The related algorithms can be classified as either high quality computation or high speed performance. This letter presents an algorithm that ensures both benefits at the same time. The proposed algorithm intelligently segments input images into several sub-image, after which the sub-image binarization is performed independently. Experimental results reveal that our algorithm provides the appropriate quality with the medium speed.

  • About Validity Checks of Augmented PAKE in IEEE 1363.2 and ISO/IEC 11770-4

    SeongHan SHIN  Kazukuni KOBARA  

     
    LETTER-Cryptography and Information Security

      Vol:
    E97-A No:1
      Page(s):
    413-417

    An augmented PAKE (Password-Authenticated Key Exchange) protocol provides password-only authentication in the presence of an attacker, establishment of session keys between the involving parties, and extra protection for server compromise (i.e., exposure of password verification data). Among many augmented PAKE protocols, AMP variants (AMP2 [16] and AMP+ [15]) have been standardized in IEEE 1363.2 [9] and ISO/IEC 11770-4 [10]. In this paper, we thoroughly investigate APKAS-AMP (based on AMP2 [16]) and KAM3 (based on AMP+ [15]) which require several validity checks on the values, received and computed by the parties, when using a secure prime. After showing some attacks on APKAS-AMP and KAM3, we suggest new sanity checks that are clear and sufficient to prevent an attacker from doing these attacks.

  • Optimal Transform Order of Fractional Fourier Transform for Decomposition of Overlapping Ultrasonic Signals

    Zhenkun LU  Cui YANG  Gang WEI  

     
    LETTER-Ultrasonics

      Vol:
    E97-A No:1
      Page(s):
    393-396

    The separation time-overlapping ultrasound signals is necessary to obtain accurate estimate of transit time and material properties. In this letter, a method to determine the optimal transform order of fractional Fourier transform (FRFT) for decomposition of overlapping ultrasonic signals is proposed. The optimal transform order is obtained by minimizing the mean square error (MSE) between the output and the reference signal. Furthermore, windowing in FRFT domain is discussed. Numerical simulation results show the performances of the proposed method in separating signals overlapping in time.

  • Pattern Reconstruction for Deviated AUT in Spherical Measurement by Using Spherical Waves

    Yang MIAO  Jun-ichi TAKADA  

     
    PAPER-Antennas and Propagation

      Vol:
    E97-B No:1
      Page(s):
    105-113

    To characterize an antenna, the acquisition of its three-dimensional radiation pattern is the fundamental requirement. Spherical antenna measurement is a practical approach to measuring antenna patterns in spherical geometry. However, due to the limitations of measurement range and measurement time, the measured samples may either be incomplete on scanning sphere, or be inadequate in terms of the sampling interval. Therefore there is a need to extrapolate and interpolate the measured samples. Spherical wave expansion, whose band-limited property is derived from the sampling theorem, provides a good tool for reconstructing antenna patterns. This research identifies the limitation of the conventional algorithm when reconstructing the pattern of an antenna which is not located at the coordinate origin of the measurement set-up. A novel algorithm is proposed to overcome the limitation by resampling between the unprimed and primed (where the antenna is centred) coordinate systems. The resampling of measured samples from the unprimed coordinate to the primed coordinate can be conducted by translational phase shift, and the resampling of reconstructed pattern from the primed coordinate back to the unprimed coordinate can be accomplished by rotation and translation of spherical waves. The proposed algorithm enables the analytical and continuous pattern reconstruction, even under the severe sampling condition for deviated AUT. Numerical investigations are conducted to validate the proposed algorithm.

  • The Degree of Two Classes of 3rd Order Correlation Immune Symmetric Boolean Functions

    Jie PENG  Haibin KAN  

     
    PAPER-Cryptography and Information Security

      Vol:
    E97-A No:1
      Page(s):
    365-370

    Two classes of 3rd order correlation immune symmetric Boolean functions have been constructed respectively in [1] and [2], in which some interesting phenomena of the algebraic degree have been observed as well. However, a good explanation has not been given. In this paper, we obtain the formulas for the degree of these functions, which can well explain the behavior of their degree.

  • Analysis of Blacklist Update Frequency for Countering Malware Attacks on Websites

    Takeshi YAGI  Junichi MURAYAMA  Takeo HARIU  Sho TSUGAWA  Hiroyuki OHSAKI  Masayuki MURATA  

     
    PAPER-Internet

      Vol:
    E97-B No:1
      Page(s):
    76-86

    We proposes a method for determining the frequency for monitoring the activities of a malware download site used for malware attacks on websites. In recent years, there has been an increase in attacks exploiting vulnerabilities in web applications for infecting websites with malware and maliciously using those websites as attack platforms. One scheme for countering such attacks is to blacklist malware download sites and filter out access to them from user websites. However, a malware download site is often constructed through the use of an ordinary website that has been maliciously manipulated by an attacker. Once the malware has been deleted from the malware download site, this scheme must be able to unblacklist that site to prevent normal user websites from being falsely detected as malware download sites. However, if a malware download site is frequently monitored for the presence of malware, the attacker may sense this monitoring and relocate that malware on a different site. This means that an attack will not be detected until the newly generated malware download site is discovered. In response to these problems, we clarify the change in attack-detection accuracy caused by attacker behavior. This is done by modeling attacker behavior, specifying a state-transition model with respect to the blacklisting of a malware download site, and analyzing these models with synthetically generated attack patterns and measured attack patterns in an operation network. From this analysis, we derive the optimal monitoring frequency that maximizes the true detection rate while minimizing the false detection rate.

  • Chosen-IV Correlation Power Analysis on KCipher-2 Hardware and a Masking-Based Countermeasure

    Takafumi HIBIKI  Naofumi HOMMA  Yuto NAKANO  Kazuhide FUKUSHIMA  Shinsaku KIYOMOTO  Yutaka MIYAKE  Takafumi AOKI  

     
    PAPER-Symmetric Key Based Cryptography

      Vol:
    E97-A No:1
      Page(s):
    157-166

    This paper presents a chosen-IV (Initial Vector) correlation power analysis on the international standard stream cipher KCipher-2 together with an effective countermeasure. First, we describe a power analysis technique which can reveal the secret key (initial key) of KCipher-2 and then evaluate the validity of the CPA with experiments using both FPGA and ASIC implementations of KCipher-2 processors. This paper also proposes a masking-based countermeasure against the CPA. The concept of the proposed countermeasure is to mask intermediate data which pass through the non-linear function part including integer addition, substitution functions, and internal registers L1 and L2. We design two types of masked integer adders and two types of masked substitution circuits in order to minimize circuit area and delay, respectively. The effectiveness of the countermeasure is demonstrated through an experiment on the same FPGA platform. The performance of the proposed method is evaluated through the ASIC fabricated by TSMC 65nm CMOS process technology. In comparison with the conventional design, the design with the countermeasure can be achieved by the area increase of 1.6 times at most.

  • A Method of Analog IC Placement with Common Centroid Constraints

    Keitaro UE  Kunihiro FUJIYOSHI  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E97-A No:1
      Page(s):
    339-346

    To improve immunity against process gradients, a common centroid constraint, in which every pair of capacitors should be placed symmetrically with respect to a common center point, is widely used. The pair of capacitors are derived by dividing some original capacitors into two halves. Xiao et al. proposed a method to obtain a placement which satisfies the common centroid constraints, but this method has a defect. In this paper, we propose a decoding algorithm to obtain a placement which satisfies common centroid constraints.

  • Adaptive Reversible Data Hiding via Integer-to-Integer Subband Transform and Adaptive Generalized Difference Expansion Method

    Taichi YOSHIDA  Taizo SUZUKI  Masaaki IKEHARA  

     
    PAPER-Image

      Vol:
    E97-A No:1
      Page(s):
    384-392

    We propose an adaptive reversible data hiding method with superior visual quality and capacity in which an adaptive generalized difference expansion (AGDE) method is applied to an integer-to-integer subband transform (I2I-ST). I2I-ST performs the reversible subband transform and the AGDE method is a state-of-the-art method of reversible data hiding. The results of experiments we performed objectively and perceptually show that the proposed method has better visual quality than conventional methods at the same embedding rate due to low variance in the frequency domain.

  • Improvement on a Knapsack-Based Probabilistic Encryption Scheme

    Baocang WANG  Fagen LI  Yupu HU  

     
    LETTER-Cryptography and Information Security

      Vol:
    E97-A No:1
      Page(s):
    421-424

    In this letter, we propose an improvement on a knapsack probabilistic encryption scheme [B. Wang, Q. Wu, Y. Hu, Information Sciences 177 (2007)], which was shown vulnerable to attacks due to Youssef [A.M. Youssef, Information Sciences 179 (2009)] and Lee [M.S. Lee, Information Sciences 222 (2013)], respectively. The modified encryption scheme is secure against Youssef's and Lee's attacks only at the costs of slightly compromising the efficiency of the original proposal.

  • Doppler Shift Based Target Localization Using Semidefinite Relaxation

    Yan Shen DU  Ping WEI  Wan Chun LI  Hong Shu LIAO  

     
    LETTER-Digital Signal Processing

      Vol:
    E97-A No:1
      Page(s):
    397-400

    We propose a novel approach to the target localization problem using Doppler frequency shift measurements. We first reformulate the maximum likelihood estimation (MLE) as a constrained weighted least squares (CWLS) estimation, and then perform the semidefinite relaxation to relax the CWLS problem as a convex semidefinite programming (SDP) problem, which can be efficiently solved using modern convex optimization methods. Finally, the SDP solution can be used to initialize the original MLE which can provide estimates achieve the Cramer-Rao lower bound accuracy. Simulations corroborate the good performance of the proposed method.

  • Improved Spectral Efficiency at Reduced Outage Probability for Cooperative Wireless Networks by Using CSI Directed Estimate and Forward Strategy

    Yihenew Wondie MARYE  Chen LIU  Feng LU  Hua-An ZHAO  

     
    PAPER-Foundations

      Vol:
    E97-A No:1
      Page(s):
    7-17

    Cooperative wireless communication is a communication mechanism to attain diversity through virtual antenna array that is formed by sharing resources among different users. Different strategies of resource utilization such as amplify-and-forward (AF) and decode-and-forward (DF) already exist in cooperative networks. Although the implementation of these strategies is simple, their utilization of the channel state information (CSI) is generally poor. As a result, the outage and bit error rate (BER) performances need much more improvement in order to satisfy the upcoming high data rate demands. For that to happen the spectral efficiency supported by a wireless system at a very low outage probability should be increased. In this paper a new approach, based on the previously existing ones, called CSI directed estimate and forward (CDEF) with a reduced estimation domain is proposed. A closed form solution for the optimal signal estimation at the relay using minimum mean square error (MMSE) as well as a possible set reduction of the estimation domain is given. It will be shown that this new strategy attains better symbol error rate (SER) and outage performance than AF or DF when the source relay link is comparatively better than the relay destination link. Simulation results also show that it has got better spectral efficiency at low outage probability for a given signal to noise ratio (SNR) as well as for a fixed outage probability in any operating SNR range.

  • Global Asymptotic Stabilization of Uncertain Nonlinear Systems via System Reconfiguration and Lyapunov Equation Utilization

    Ho-Lim CHOI  

     
    LETTER-Systems and Control

      Vol:
    E97-A No:1
      Page(s):
    401-404

    We introduce a new nonlinear control method to globally asymptotically stabilize a class of uncertain nonlinear systems. First, we provide a system reconfiguration method which reconfigures the nonlinear systems with smooth positive functions. Then, we provide a nonlinear controller design method to globally asymptotically stabilize the reconfigured systems by utilizing Lyapunov equations. As a result, a class of uncertain nonlinear systems which have not been treated in the existing results can be globally asymptotically stabilized by our control method. Examples are given for easy following and illustration.

  • On Achieving High Survivability in Virtualized Data Centers Open Access

    Md Golam RABBANI  Mohamed Faten ZHANI  Raouf BOUTABA  

     
    INVITED PAPER

      Vol:
    E97-B No:1
      Page(s):
    10-18

    As businesses are increasingly relying on the cloud to host their services, cloud providers are striving to offer guaranteed and highly-available resources. To achieve this goal, recent proposals have advocated to offer both computing and networking resources in the form of Virtual Data Centers (VDCs). Subsequently, several attempts have been made to improve the availability of VDCs through reliability-aware resource allocation schemes and redundancy provisioning techniques. However, the research to date has not considered the heterogeneity of the underlying physical components. Specifically, it does not consider recent findings showing that failure rates and availability of data center equipments can vary significantly depending on various parameters including their types and ages. To address this limitation, in this paper we propose a High-availability Virtual Infrastructure management framework (Hi-VI) that takes into account the heterogeneity of cloud data center equipments to dynamically provision backup resources in order to ensure required VDC availability. Specifically, we propose a technique to compute the availability of a VDC that considers both (1) the heterogeneity of data center networking and computing equipments in terms of failure rates and availability, and (2) the number of redundant virtual nodes and links provisioned as backups. We then leverage this technique to propose an allocation scheme that jointly provisions resources for VDCs and backups of virtual components with the goal of achieving the required VDC availability while minimizing energy costs. Through simulations, we demonstrate the effectiveness of our framework compared to heterogeneity-oblivious solutions.

  • Portfolio Selection Models with Technical Analysis-Based Fuzzy Birandom Variables

    You LI  Bo WANG  Junzo WATADA  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E97-D No:1
      Page(s):
    11-21

    Recently, fuzzy set theory has been widely employed in building portfolio selection models where uncertainty plays a role. In these models, future security returns are generally taken for fuzzy variables and mathematical models are then built to maximize the investment profit according to a given risk level or to minimize a risk level based on a fixed profit level. Based on existing works, this paper proposes a portfolio selection model based on fuzzy birandom variables. Two original contributions are provided by the study: First, the concept of technical analysis is combined with fuzzy set theory to use the security returns as fuzzy birandom variables. Second, the fuzzy birandom Value-at-Risk (VaR) is used to build our model, which is called the fuzzy birandom VaR-based portfolio selection model (FBVaR-PSM). The VaR can directly reflect the largest loss of a selected case at a given confidence level and it is more sensitive than other models and more acceptable for general investors than conventional risk measurements. To solve the FBVaR-PSM, in some special cases when the security returns are taken for trapezoidal, triangular or Gaussian fuzzy birandom variables, several crisp equivalent models of the FBVaR-PSM are derived, which can be handled by any linear programming solver. In general, the fuzzy birandom simulation-based particle swarm optimization algorithm (FBS-PSO) is designed to find the approximate optimal solution. To illustrate the proposed model and the behavior of the FBS-PSO, two numerical examples are introduced based on investors' different risk attitudes. Finally, we analyze the experimental results and provide a discussion of some existing approaches.

  • A Concurrent Partial Snapshot Algorithm for Large-Scale and Dynamic Distributed Systems

    Yonghwan KIM  Tadashi ARARAGI  Junya NAKAMURA  Toshimitsu MASUZAWA  

     
    PAPER-Dependable Computing

      Vol:
    E97-D No:1
      Page(s):
    65-76

    Checkpoint-rollback recovery, which is a universal method for restoring distributed systems after faults, requires a sophisticated snapshot algorithm especially if the systems are large-scale, since repeatedly taking global snapshots of the whole system requires unacceptable communication cost. As a sophisticated snapshot algorithm, a partial snapshot algorithm has been introduced that takes a snapshot of a subsystem consisting only of the nodes that are communication-related to the initiator instead of a global snapshot of the whole system. In this paper, we modify the previous partial snapshot algorithm to create a new one that can take a partial snapshot more efficiently, especially when multiple nodes concurrently initiate the algorithm. Experiments show that the proposed algorithm greatly reduces the amount of communication needed for taking partial snapshots.

  • Extraction Method of Scallop Area from Sand Seabed Images

    Koichiro ENOMOTO  Masashi TODA  Yasuhiro KUWAHARA  

     
    PAPER-Pattern Recognition

      Vol:
    E97-D No:1
      Page(s):
    130-138

    The results of fishery investigations are used to estimate the catch size, times fish are caught, and future stock in the fish culture industry. In Tokoro, Japan, scallop farms are located on gravel and sand seabed. Seabed images are necessary to visually estimate the number of scallops of a particular farm. However, there is no automatic technology for measuring resources quantities and so the current investigation technique is the manual measurement by experts. We propose a method to extract scallop areas from images of sand seabed. In the sand field, we can see only the shelly rim because the scallop is covered with sand and opens and closes its shell while it is alive and breathing. We propose a method to extract the shelly rim areas under varying illumination, extract the scallop areas using the shelly rims based on professional knowledge of the sand field, explain the results, and evaluate the method's effectiveness.

  • Problem Analyzing by Distributed, History and Trend Templates with Integrated Supporting of DCMS

    Zhiming CAI  Zhe YANG  Menghan WANG  

     
    LETTER-Software Engineering

      Vol:
    E97-D No:1
      Page(s):
    146-150

    In analysis of general-purpose problems which involves many factors from different viewpoints, an important challenge is to acquire different opinions and distributed modeling templates from multiple remote experts, and to aggregate these templates. In order to deal with this problem, we developed the Distributed Cooperative Modeling System (DCMS) by integrating our achievements [1]-[5]. The paper introduces how to analyze a complex problem using DCMS, with distributed templates from multiple experts, historical templates based on statistical data, and trend templates deduced from historical data, with the example of analyzing “diversification of Macao industries”

  • Unified Coprocessor Architecture for Secure Key Storage and Challenge-Response Authentication

    Koichi SHIMIZU  Daisuke SUZUKI  Toyohiro TSURUMARU  Takeshi SUGAWARA  Mitsuru SHIOZAKI  Takeshi FUJINO  

     
    PAPER-Hardware Based Security

      Vol:
    E97-A No:1
      Page(s):
    264-274

    In this paper we propose a unified coprocessor architecture that, by using a Glitch PUF and a block cipher, efficiently unifies necessary functions for secure key storage and challenge-response authentication. Based on the fact that a Glitch PUF uses a random logic for the purpose of generating glitches, the proposed architecture is designed around a block cipher circuit such that its round functions can be shared with a Glitch PUF as a random logic. As a concrete example, a circuit structure using a Glitch PUF and an AES circuit is presented, and evaluation results for its implementation on FPGA are provided. In addition, a physical random number generator using the same circuit is proposed. Evaluation results by the two major test suites for randomness, NIST SP 800-22 and Diehard, are provided, proving that the physical random number generator passes the test suites.

5481-5500hit(20498hit)