The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

5701-5720hit(20498hit)

  • Improved Speech-Presence Uncertainty Estimation Based on Spectral Gradient for Global Soft Decision-Based Speech Enhancement

    Jong-Woong KIM  Joon-Hyuk CHANG  Sang Won NAM  Dong Kook KIM  Jong Won SHIN  

     
    LETTER-Speech and Hearing

      Vol:
    E96-A No:10
      Page(s):
    2025-2028

    In this paper, we propose a speech-presence uncertainty estimation to improve the global soft decision-based speech enhancement technique by using the spectral gradient scheme. The conventional soft decision-based speech enhancement technique uses a fixed ratio (Q) of the a priori speech-presence and speech-absence probabilities to derive the speech-absence probability (SAP). However, we attempt to adaptively change Q according to the spectral gradient between the current and past frames as well as the status of the voice activity in the previous two frames. As a result, the distinct values of Q to each frequency in each frame are assigned in order to improve the performance of the SAP by tracking the robust a priori information of the speech-presence in time.

  • Electromagnetic Modeling of Metamaterials Open Access

    Toru UNO  

     
    INVITED PAPER

      Vol:
    E96-B No:10
      Page(s):
    2340-2347

    Metamaterials are generally defined as a class of artificial effective media which macroscopically exhibit extraordinary electromagnetic properties that may not be found in nature, and are composed of periodically structured dielectric, or magnetic, or metallic materials. This paper reviews recently developed electromagnetic modeling methods of metamatericals and their inherent basic ideas, with a focus on full wave numerical techniques. Methods described in this paper are the Method of Moments (MoM) and the Finite Difference Time Domain (FDTD) Method for scattering problems excited by an incident plane wave and a single nonperiodic source, and the Finite Element Method (FEM), the Finite Difference Frequency Domain (FDFD) method and the FDTD method for band diagram calculations.

  • Mode Analysis of Phase-Constant Nonreciprocity in Ferrite-Embedded CRLH Metamaterials

    Andrey POROKHNYUK  Tetsuya UEDA  Yuichi KADO  Tatsuo ITOH  

     
    PAPER

      Vol:
    E96-C No:10
      Page(s):
    1263-1272

    Phase-nonreciprocal ε-negative and CRLH metamaterials are analyzed using a new approach in which field analysis and transmission line model are combined. The examined one-dimensional nonreciprocal metamaterials are composed of a ferrite-embedded microstrip line periodically loaded with shunt stubs. In the present approach, the phase constant nonreciprocity is analytically estimated and formulated under the assumption of operating frequency far above the ferromagnetic resonant frequency. The present approach gives a good explanation to the phenomenon in terms of ferromagnetic properties of the ferrite and asymmetric geometry of the metamaterial structure, showing a good agreement with numerical simulations and experiment.

  • Effects of Channel Features on Parameters of Genetic Algorithm for MIMO Detection

    Kazi OBAIDULLAH  Constantin SIRITEANU  Shingo YOSHIZAWA  Yoshikazu MIYANAGA  

     
    PAPER-Digital Signal Processing

      Vol:
    E96-A No:10
      Page(s):
    1984-1992

    Genetic algorithm (GA) is now an important tool in the field of wireless communications. For multiple-input/multiple-output (MIMO) wireless communications system employing spatial multiplexing transmission, we evaluate the effects of GA parameters value on channel parameters in fading channels. We assume transmit-correlated Rayleigh and Rician fading with realistic Laplacian power azimuth spectrum. Azimuth spread (AS) and Rician K-factor are selected according to the measurement-based WINNER II channel model for several scenarios. Herein we have shown the effects of GA parameters and channel parameters in different WINNER II scenarios (i.e., AS and K values) and rank of the deterministic components. We employ meta GA that suitably selects the population (P), generation (G) and mutation probability (pm) for the inner GA. Then we show the cumulative distribution function (CDF) obtain experimentally for the condition number C of the channel matrix H. It is found that, GA parameters depend on the channel parameters, i.e., GA parameters are the functions of the channel parameters. It is also found that for the poorer channel conditions smaller GA parameter values are required for MIMO detection. This approach will help to achieve maximum performance in practical condition for the lower numerical complexity.

  • Exploiting the Task-Pipelined Parallelism of Stream Programs on Many-Core GPUs

    Shuai MU  Dongdong LI  Yubei CHEN  Yangdong DENG  Zhihua WANG  

     
    PAPER-Computer System

      Vol:
    E96-D No:10
      Page(s):
    2194-2207

    By exploiting data-level parallelism, Graphics Processing Units (GPUs) have become a high-throughput, general purpose computing platform. Many real-world applications especially those following a stream processing pattern, however, feature interleaved task-pipelined and data parallelism. Current GPUs are ill equipped for such applications due to the insufficient usage of computing resources and/or the excessive off-chip memory traffic. In this paper, we focus on microarchitectural enhancements to enable task-pipelined execution of data-parallel kernels on GPUs. We propose an efficient adaptive dynamic scheduling mechanism and a moderately modified L2 design. With minor hardware overhead, our techniques orchestrate both task-pipeline and data parallelisms in a unified manner. Simulation results derived by a cycle-accurate simulator on real-world applications prove that the proposed GPU microarchitecture improves the computing throughput by 18% and reduces the overall accesses to off-chip GPU memory by 13%.

  • Evaluation of Space Filling Curves for Lower-Dimensional Transformation of Image Histogram Sequences

    Jeonggon LEE  Bum-Soo KIM  Mi-Jung CHOI  Yang-Sae MOON  

     
    LETTER-Data Engineering, Web Information Systems

      Vol:
    E96-D No:10
      Page(s):
    2277-2281

    Histogram sequences represent high-dimensional time-series converted from images by space filling curves (SFCs). To overcome the high-dimensionality nature of histogram sequences (e.g., 106 dimensions for a 1024×1024 image), we often use lower-dimensional transformations, but the tightness of their lower-bounds is highly affected by the types of SFCs. In this paper we attack a challenging problem of evaluating which SFC shows the better performance when we apply the lower-dimensional transformation to histogram sequences. For this, we first present a concept of spatial locality and propose spatial locality preservation metric (SLPM in short). We then evaluate five well-known SFCs from the perspective of SLPM and verify that the evaluation result concurs with the actual transformation performance. Finally, we empirically validate the accuracy of SLPM by providing that the Hilbert-order with the highest SLPM also shows the best performance in k-NN (k-nearest neighbors) search.

  • Complexity of Strong Satisfiability Problems for Reactive System Specifications

    Masaya SHIMAKAWA  Shigeki HAGIHARA  Naoki YONEZAKI  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E96-D No:10
      Page(s):
    2187-2193

    Many fatal accidents involving safety-critical reactive systems have occurred in unexpected situations, which were not considered during the design and test phases of system development. To prevent such accidents, reactive systems should be designed to respond appropriately to any request from an environment at any time. Verifying this property during the specification phase reduces the development costs of safety-critical reactive systems. This property of a specification is commonly known as realizability. The complexity of the realizability problem is 2EXPTIME-complete. We have introduced the concept of strong satisfiability, which is a necessary condition for realizability. Many practical unrealizable specifications are also strongly unsatisfiable. In this paper, we show that the complexity of the strong satisfiability problem is EXPSPACE-complete. This means that strong satisfiability offers the advantage of lower complexity for analysis, compared to realizability. Moreover, we show that the strong satisfiability problem remains EXPSPACE-complete even when only formulae with a temporal depth of at most 2 are allowed.

  • A 1µs Settling Time Fully Digital AGC System with a 1GHz-Bandwidth Variable Gain Amplifier for WiGig/IEEE802.11ad Multi-Gigabit Wireless Transceivers

    Ryo KITAMURA  Koichiro TANAKA  Tadashi MORITA  Takayuki TSUKIZAWA  Koji TAKINAMI  Noriaki SAITO  

     
    PAPER

      Vol:
    E96-C No:10
      Page(s):
    1301-1310

    This paper presents an automatic gain control (AGC) system suitable for 60GHz direct conversion receivers. By using a two step gain control algorithm with high-pass filter cutoff frequency switching, the proposed AGC system realizes fast settling time and wide dynamic range simultaneously. The paper also discusses wide-bandwidth variable gain amplifier (VGA) design. By introducing digitally-controlled resistors and gain flattening capacitors, the proposed VGA realizes wide gain range while compensating gain variations due to parasitic capacitance of MOS switches. The AGC system is implemented in a transceiver chipset where RFIC and BBIC are fabricated in 90nm CMOS and 40nm CMOS respectively. The measurement shows excellent dynamic range of 47dB with +/-1dB gain accuracy within 1µs settling time, which satisfies the stringent requirements of the IEEE802.11ad standard.

  • Dynamic Quantization of Nonaffine Nonlinear Systems

    Shun-ichi AZUMA  Toshiharu SUGIE  

     
    PAPER-Systems and Control

      Vol:
    E96-A No:10
      Page(s):
    1993-1998

    For quantized control, one of the powerful approaches is to use a dynamic quantizer, which has internal memories for signal quantization, with a conventional controller in the feedback control loop. The design of dynamic quantizers has become a major topic, and a number of results have been derived so far. In this paper, we extend the authors' recent result on dynamic quantizers, and applied them to a more general class of nonlinear systems, called the nonaffine nonlinear systems. Based on the performance index representing the degradation caused by the signal quantization, we propose practical dynamic quantizers, which include the authors' former result as a special case. Moreover, we provide theoretical results on the performance and on the stability of the resulting quantized systems.

  • Bayesian Nonparametric Approach to Blind Separation of Infinitely Many Sparse Sources

    Hirokazu KAMEOKA  Misa SATO  Takuma ONO  Nobutaka ONO  Shigeki SAGAYAMA  

     
    PAPER

      Vol:
    E96-A No:10
      Page(s):
    1928-1937

    This paper deals with the problem of underdetermined blind source separation (BSS) where the number of sources is unknown. We propose a BSS approach that simultaneously estimates the number of sources, separates the sources based on the sparseness of speech, estimates the direction of arrival of each source, and performs permutation alignment. We confirmed experimentally that reasonably good separation was obtained with the present method without specifying the number of sources.

  • On Global Exponential Stabilization of a Class of Nonlinear Systems by Output Feedback via Matrix Inequality Approach

    Min-Sung KOO  Ho-Lim CHOI  

     
    LETTER-Systems and Control

      Vol:
    E96-A No:10
      Page(s):
    2034-2038

    In this letter, we consider the global exponential stabilization problem by output feedback for a class of nonlinear systems. Along with a newly proposed matrix inequality condition, the proposed control method has improved flexibility in dealing with nonlinearity, over the existing methods. Analysis and examples are given to illustrate the improved features of our control method.

  • Direct Approximation of Quadratic Mutual Information and Its Application to Dependence-Maximization Clustering

    Janya SAINUI  Masashi SUGIYAMA  

     
    LETTER-Artificial Intelligence, Data Mining

      Vol:
    E96-D No:10
      Page(s):
    2282-2285

    Mutual information (MI) is a standard measure of statistical dependence of random variables. However, due to the log function and the ratio of probability densities included in MI, it is sensitive to outliers. On the other hand, the L2-distance variant of MI called quadratic MI (QMI) tends to be robust against outliers because QMI is just the integral of the squared difference between the joint density and the product of marginals. In this paper, we propose a kernel least-squares QMI estimator called least-squares QMI (LSQMI) that directly estimates the density difference without estimating each density. A notable advantage of LSQMI is that its solution can be analytically and efficiently computed just by solving a system of linear equations. We then apply LSQMI to dependence-maximization clustering, and demonstrate its usefulness experimentally.

  • Print-and-Scan Resilient Watermarking through Polarizing DCT Coefficients

    Chun-Hung CHEN  Yuan-Liang TANG  Wen-Shyong HSIEH  

     
    PAPER-Information Network

      Vol:
    E96-D No:10
      Page(s):
    2208-2214

    Digital watermarking techniques have been used to assert the ownerships of digital images. The ownership information is embedded in an image as a watermark so that the owner of the image can be identified. However, many types of attacks have been used in attempts to break or remove embedded watermarks. Therefore, the watermark should be very robust against various kinds of attacks. Among them, the print-and-scan (PS) attack is very challenging because it not only alters the pixel values but also changes the positions of the original pixels. In this paper, we propose a watermarking system operating in the discrete cosine transform (DCT) domain. The polarities of the DCT coefficients are modified for watermark embedding. This is done by considering the properties of DCT coefficients under the PS attack. The proposed system is able to maintain the image quality after watermarking and the embedded watermark is very robust against the PS attack as well.

  • Blind Carrier Frequency Offset Estimation Based on Polynomial Rooting for Interleaved Uplink OFDMA

    Ann-Chen CHANG  Chih-Chang SHEN  

     
    LETTER-Communication Theory and Signals

      Vol:
    E96-A No:10
      Page(s):
    2057-2060

    This letter deals with blind carrier frequency offset estimation by exploiting the minimum variance distortionless response (MVDR) criterion for interleaved uplink orthogonal frequency division multiple access (OFDMA). It has been shown that the complexity and estimation accuracy of MVDR strictly depend on the grid size used during the search. For the purpose of efficient estimation, we present an improved polynomial rooting estimator that is robust in low signal-to-noise ratio scenario. Simulation results are provided for illustrating the effectiveness of the proposed estimator.

  • Performance Analysis of a Two-Way Relay Network with Multiple Interferers

    Dongwook CHOI  Jae Hong LEE  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:10
      Page(s):
    2668-2675

    This paper analyzes the performance of a two-way relay network experiencing co-channel interference from multiple interferers due to aggressive frequency reuse in cellular networks. We discuss two different scenarios: Outages are declared individually for each user (individual outage) and an outage is declared simultaneously for all users (common outage). We derive the closed-form expressions for the individual and common outage probabilities of the two-way relay network with multiple interferers. The validity of our analytical results is verified by a comparison with simulation results. It is shown that the analytical results perfectly match the simulation results of the individual and common outage probabilities. Also, it is shown that the individual and common outage probabilities increase as the number of interferers increases.

  • New Negative Refractive Index Material Composed of Dielectric Prisms with Metal Patterns

    Hiroshi KUBO  Kazuhiro NISHIBAYASHI  Tsunayuki YAMAMOTO  Atsushi SANADA  

     
    PAPER

      Vol:
    E96-C No:10
      Page(s):
    1273-1280

    A two-dimensional negative refractive index material is proposed. The material has a bulky structure composed of dielectric prism cells with metal patterns. The material is expressed by an equivalent circuit. The propagation regions of two left-handed modes calculated from the equivalent circuit exist near the propagation regions obtained by electromagnetic simulation. It is confirmed by simulation that the incident plane wave goes into the material with low reflection by using the second left-handed mode and attaching metal conversion strips around the material. A negative refractive index slab lens with 15×9 cells is made to measure the field distribution of wave out of the lens. It is shown that the resolution of the slab lens exceeds the diffraction-limit.

  • Channel Scaling-Based Transmit Antenna Selection for 2-Dimensional Rake Combining Spatial Multiplexing UWB MIMO Systems

    Sangchoon KIM  

     
    LETTER-Communication Theory and Signals

      Vol:
    E96-A No:10
      Page(s):
    2061-2065

    In this letter, a fast transmit antenna selection algorithm is proposed for the spatial-temporal combining-based spatial multiplexing ultra-wideband systems on a log-normal multipath fading channel. The presented suboptimum algorithm selects the transmit antennas associated with the largest signal to noise ratio value computed by one QR decomposition operation of the full channel matrix spatially and temporally combined. It performs the iterative channel scaling operation about the channel matrix and singular value decomposition about the channel scaled matrix. It is shown that the proposed antenna selection algorithm leads to a substantial improvement in the error performance while keeping low-complexity, and obtains almost the same error performance as the exhaustive search-based optimal antenna selection algorithm.

  • Clinical Setup of Microwave Mammography

    Yoshihiko KUWAHARA  Saori MIURA  Yusuke NISHINA  Kaiji MUKUMOTO  Hiroyuki OGURA  Harumi SAKAHARA  

     
    PAPER-Sensing

      Vol:
    E96-B No:10
      Page(s):
    2553-2562

    A microwave mammography setup for clinical testing was developed and used to successfully carry out an initial clinical test. The equipment is based on multistatic ultra wideband (UWB) radar, which features a multistatic microwave imaging via space time (MS-MIST) algorithm for high resolution and a conformal array with an aspirator for fixing the breast in place. In this paper, an outline of the equipment, a numerical simulation, and clinical test results are presented.

  • A New Representation of Elements of Binary Fields with Subquadratic Space Complexity Multiplication of Polynomials

    Ferruh ÖZBUDAK  Sedat AKLEYLEK  Murat CENK  

     
    PAPER-General Fundamentals and Boundaries

      Vol:
    E96-A No:10
      Page(s):
    2016-2024

    In this paper, Hermite polynomial representation is proposed as an alternative way to represent finite fields of characteristic two. We show that multiplication in Hermite polynomial representation can be achieved with subquadratic space complexity. This representation enables us to find binomial or trinomial irreducible polynomials which allows us faster modular reduction over binary fields when there is no desirable such low weight irreducible polynomial in other representations. We then show that the product of two elements in Hermite polynomial representation can be performed as Toeplitz matrix-vector product. This representation is very interesting for NIST recommended binary field GF(2571) since there is no ONB for the corresponding extension. This representation can be used to obtain more efficient finite field arithmetic.

  • AC Resistance of Copper Clad Aluminum Wires

    Ning GUAN  Chihiro KAMIDAKI  Takashi SHINMOTO  Ken'ichiro YASHIRO  

     
    PAPER-Electromagnetic Analysis

      Vol:
    E96-B No:10
      Page(s):
    2462-2468

    Recently, wireless power transfer has attracted much attention for power supplying on not only small electric devices but also large equipments such as electric and hybrid vehicles. Coils are important components in such power transfer systems and their AC resistance is a key factor to determine the transferring efficiency. The AC resistance of wires used in the coils is required to be as lower as possible for high efficiency systems. Copper clad aluminum (CCA) wire which has an aluminum (Al) core surrounded by a thin copper (Cu) layer has been proposed for this purpose. CCA wires are not only light-weight and easy for soldering but also show lower AC resistance than commonly used Cu wires on certain conditions. In this paper, the AC resistance caused by the skin and proximity effects of a CCA wire with circular cross-section is numerically analyzed. The condition that CCA wires are superior to Cu wires in view of AC resistance is discussed. Simulated results are compared with experiments on fabricated coils and good agreement is obtained. It is actually verified that coils wound by CCA wires have lower AC resistance than those by Cu wires under some circumstances, especially at high frequencies.

5701-5720hit(20498hit)