The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

5901-5920hit(20498hit)

  • A Simple Scheduling Restriction Scheme for Interference Coordinated Networks

    Moo Ryong JEONG  Nobuhiko MIKI  

     
    PAPER

      Vol:
    E96-B No:6
      Page(s):
    1306-1317

    Scheduling restriction is attracting much attention in LTE-Advanced as a technique to reduce the power consumption and network overheads in interference coordinated heterogeneous networks (HetNets). Such a network with inter-cell interference coordination (ICIC) provides two radio resources with different channel quality statistics. One of the resources is protected (unprotected) from inter-cell interference (hence, called protected (non-protected) resource) and has higher (lower) average channel quality. Without scheduling restriction, the channel quality feedback would be doubled to reflect the quality difference of the two resources. We present a simple scheduling restriction scheme that addresses the problem without significant performance degradation. Users with relatively larger (smaller) average channel quality difference between the two resources are scheduled in the protected (non-protected) resource only, and a boundary user, determined by a proportional fair resource allocation (PFRA) under simplified static channels, is scheduled on one of the two resources or both depending on PFRA. Having most users scheduled in only one of the resources, the power consumption and network overheads that would otherwise be required for the channel quality feedback on the other resource can be avoided. System level simulation of LTE-Advanced downlink shows that the performance degradation due to our scheduling restriction scheme is less than 2%, with the average feedback reduction of 40%.

  • Concurrent Detection and Recognition of Individual Object Based on Colour and p-SIFT Features

    Jienan ZHANG  Shouyi YIN  Peng OUYANG  Leibo LIU  Shaojun WEI  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1357-1365

    In this paper we propose a method to use features of an individual object to locate and recognize this object concurrently in a static image with Multi-feature fusion based on multiple objects sample library. This method is proposed based on the observation that lots of previous works focuses on category recognition and takes advantage of common characters of special category to detect the existence of it. However, these algorithms cease to be effective if we search existence of individual objects instead of categories in complex background. To solve this problem, we abandon the concept of category and propose an effective way to use directly features of an individual object as clues to detection and recognition. In our system, we import multi-feature fusion method based on colour histogram and prominent SIFT (p-SIFT) feature to improve detection and recognition accuracy rate. p-SIFT feature is an improved SIFT feature acquired by further feature extraction of correlation information based on Feature Matrix aiming at low computation complexity with good matching rate that is proposed by ourselves. In process of detecting object, we abandon conventional methods and instead take full use of multi-feature to start with a simple but effective way-using colour feature to reduce amounts of patches of interest (POI). Our method is evaluated on several publicly available datasets including Pascal VOC 2005 dataset, Objects101 and datasets provided by Achanta et al.

  • An Application-Level Routing Method with Transit Cost Reduction Based on a Distributed Heuristic Algorithm

    Kazuhito MATSUDA  Go HASEGAWA  Masayuki MURATA  

     
    PAPER-Network

      Vol:
    E96-B No:6
      Page(s):
    1481-1491

    Application-level routing that chooses an end-to-end traffic route that relays other end hosts can improve user-perceived performance metrics such as end-to-end latency and available bandwidth. However, selfish route selection performed by each end user can lead to a decrease in path performance due to overload by route overlaps, as well as an increase in the inter-ISP transit cost as a result of utilizing more transit links compared with native IP routing. In this paper, we first strictly define an optimization problem for selecting application-level traffic routes with the aim of maximizing end-to-end network performance under a transit cost constraint. We then propose an application-level traffic routing method based on distributed simulated annealing to obtain good solutions to the problem. We evaluate the performance of the proposed method by assuming that PlanetLab nodes utilize application-level traffic routing. We show that the proposed routing method can result in considerable improvement of network performance without increasing transit cost. In particular, when using end-to-end latency as a routing metric, the number of overloaded end-to-end paths can be reduced by about 65%, as compared with that when using non-coordinated methods. We also demonstrate that the proposed method can react to dynamic changes in traffic demand and select appropriate routes.

  • Design of a Digitally Error-Corrected Pipeline ADC Using Incomplete Settling of Pre-Charged Residue Amplifiers

    Sung-Wook JUN  Lianghua MIAO  Keita YASUTOMI  Keiichiro KAGAWA  Shoji KAWAHITO  

     
    PAPER

      Vol:
    E96-C No:6
      Page(s):
    828-837

    This paper presents a digitally error-corrected pipeline analog-to-digital converter (ADC) using linearization of incomplete settling errors. A pre-charging technique is used for residue amplifiers in order to reduce the incomplete settling error itself and linearize the input signal dependency of the incomplete settling error. A technique with charge redistribution of divided capacitors is proposed for pre-charging capacitors without any additional reference sources. This linearized settling error is corrected by a first-order error approximation in digital domain with feasible complexity and cost. Simulation results show that the ADC achieves SNDR of 70 dB, SFDR of 79 dB at nyquist input frequency in a 65 nm CMOS process under 1.2 V power supply voltage for 1.2 Vp-p input signal swing. The estimated power consumption of the 12b 200 MS/s pipeline ADC using the proposed digital error correction of incomplete settling errors is 7.6 mW with a small FOM of 22 fJ/conv-step.

  • Interference Mitigation in CR-Enabled Heterogeneous Networks Open Access

    Shao-Yu LIEN  Shin-Ming CHENG  Kwang-Cheng CHEN  

     
    INVITED PAPER

      Vol:
    E96-B No:6
      Page(s):
    1230-1242

    The heterogeneous network (HetNet), which deploys small cells such as picocells, femotcells, and relay nodes within macrocell, is regarded as a cost-efficient and energy-efficient approach to resolve increasing demand for data bandwidth and thus has received a lot of attention from research and industry. Since small cells share the same licensed spectrum with macrocells, concurrent transmission induces severe interference, which causes performance degradation, particularly when coordination among small cell base stations (BSs) is infeasible. Given the dense, massive, and unplanned deployment of small cells, mitigating interference in a distributed manner is a challenge and has been explored in recent papers. An efficient and innovative approach is to apply cognitive radio (CR) into HetNet, which enables small cells to sense and to adapt to their surrounding environments. Consequently, stations in each small cell are able to acquire additional information from surrounding environments and opportunistically operate in the spectrum hole, constrained by minimal inducing interference. This paper summarizes and highlights the CR-based interference mitigation approaches in orthogonal frequency division multiple access (OFDMA)-based HetNet networks. With special discussing the role of sensed information at small cells for the interference mitigation, this paper presents the potential cross-layer facilitation of the CR-enable HetNet.

  • Bistatic Ocean Wave Remote Sensing System by GPS

    Jian CUI  Nobuyoshi KOUGUCHI  

     
    PAPER-Sensing

      Vol:
    E96-B No:6
      Page(s):
    1625-1632

    This paper presents a bistatic remote sensing system to efficiently estimate the characteristics of sea swell near a harbor by receiving and processing global navigation satellite system signals transmitted in line-of-sight channels and fading multipath channels. The new system is designed to measure and monitor sea swell to improve the safety of mooring and navigation services in or around harbors, and long-term measurement also will provide valuable hydrologic data for harbor construction or reconstruction. The system uses two sets of antennas. One is a conventional antenna to receive line-of-sight signal and mitigate the disturbances from multiple propagation paths, and the other is a left hand circular polarization arrayed antenna to receive reflected signals from sea-surface. In particular, a wide bandwidth RF/IF front-end is designed to process reflected signals with high sampling frequency. A software receiver is developed to provide information from satellites and line-of-sight signals, and a wave characteristic estimator is also developed to process reflected signals. More specifically, correlators and Teager-Kaiser energy operator are combined to detect and depict reflected signals. Wave propagation of sea swell can be accurately mapped using intensity and relative time delays of reflected signals. The operational performance of the remote sensing system was also evaluated by numerical simulations. The results confirm that wavelength and wave period can be measured precisely by the proposed bistatic ocean wave remote sensing system.

  • Analysis of Cognitive Radio Networks with Imperfect Sensing

    Isameldin Mohammed SULIMAN  Janne J. LEHTOMÄKI  Kenta UMEBAYASHI  Marcos KATZ  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E96-B No:6
      Page(s):
    1605-1615

    It is well known that cognitive radio (CR) techniques have great potential for supporting future demands on the scarce radio spectrum resources. For example, by enabling the utilization of spectrum bands temporarily not utilized by primary users (PUs) licensed to operate on those bands. Spectrum sensing is a well-known CR technique for detecting those unutilized bands. However, the spectrum sensing outcomes cannot be perfect and there will always be some misdetections and false alarms which will affect the performance thereby degrading the quality of service (QoS) of PUs. Continuous time Markov chain (CTMC) based modeling has been widely used in the literature to evaluate the performance of CR networks (CRNs). A major limitation of the available literature is that all the key factors and realistic elements such as the effect of imperfect sensing and state dependent transition rates are not modeled in a single work. In this paper, we present a CTMC based model for analyzing the performance of CRNs. The proposed model differs from the existing models by accurately incorporating key elements such as full state dependent transition rates, multi-channel support, handoff capability, and imperfect sensing. We derive formulas for primary termination probability, secondary success probability, secondary blocking probability, secondary forced termination probability, and radio resource utilization. The results show that incorporating fully state dependent transition rates in the CTMC can significantly improve analysis accuracy, thus achieving more realistic and accurate analytical model. The results from extensive Monte Carlo simulations confirm the validity of our proposed model.

  • Adaptive Feedback Cancellation on Improved DCD Algorithms

    Chao DONG  Li GAO  Ying HONG  Chengpeng HAO  

     
    LETTER-Digital Signal Processing

      Vol:
    E96-A No:6
      Page(s):
    1478-1481

    Dichotomous coordinate descent (DCD) iterations method has been proposed for adaptive feedback cancellation, which uses a fixed number of iterations and a fixed amplitude range. In this paper, improved DCD algorithms are proposed, which substitute the constant number of iterations and the amplitude range with a variable number of iterations(VI) and/or a variable amplitude range(VA). Thus VI-DCD, VA-DCD and VIA-DCD algorithms are obtained. Computer simulations are used to compare the performance of the proposed algorithms against original DCD algorithm, and simulation results demonstrate that significant improvements are achieved in the convergence speed and accuracy. Another notable conclusion by further simulations is that the proposed algorithms achieve superior performance with a real speech segment as the input.

  • A Modified Pulse Coupled Neural Network with Anisotropic Synaptic Weight Matrix for Image Edge Detection

    Zhan SHI  Jinglu HU  

     
    PAPER-Image

      Vol:
    E96-A No:6
      Page(s):
    1460-1467

    Pulse coupled neural network (PCNN) is a new type of artificial neural network specific for image processing applications. It is a single layer, two dimensional network with neurons which have 1:1 correspondence to the pixels of an input image. It is convenient to process the intensities and spatial locations of image pixels simultaneously by applying a PCNN. Therefore, we propose a modified PCNN with anisotropic synaptic weight matrix for image edge detection from the aspect of intensity similarities of pixels to their neighborhoods. By applying the anisotropic synaptic weight matrix, the interconnections are only established between the central neuron and the neighboring neurons corresponding to pixels with similar intensity values in a 3 by 3 neighborhood. Neurons corresponding to edge pixels and non-edge pixels will receive different input signal from the neighboring neurons. By setting appropriate threshold conditions, image step edges can be detected effectively. Comparing with conventional PCNN based edge detection methods, the proposed modified PCNN is much easier to control, and the optimal result can be achieved instantly after all neurons pulsed. Furthermore, the proposed method is shown to be able to distinguish the isolated pixels from step edge pixels better than derivative edge detectors.

  • LDR Image to HDR Image Mapping with Overexposure Preprocessing

    Yongqing HUO  Fan YANG  Vincent BROST  Bo GU  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1185-1194

    Due to the growing popularity of High Dynamic Range (HDR) images and HDR displays, a large amount of existing Low Dynamic Range (LDR) images are required to be converted to HDR format to benefit HDR advantages, which give rise to some LDR to HDR algorithms. Most of these algorithms especially tackle overexposed areas during expanding, which is the potential to make the image quality worse than that before processing and introduces artifacts. To dispel these problems, we present a new LDR to HDR approach, unlike the existing techniques, it focuses on avoiding sophisticated treatment to overexposed areas in dynamic range expansion step. Based on a separating principle, firstly, according to the familiar types of overexposure, the overexposed areas are classified into two categories which are removed and corrected respectively by two kinds of techniques. Secondly, for maintaining color consistency, color recovery is carried out to the preprocessed images. Finally, the LDR image is expanded to HDR. Experiments show that the proposed approach performs well and produced images become more favorable and suitable for applications. The image quality metric also illustrates that we can reveal more details without causing artifacts introduced by other algorithms.

  • Sensor Scheduling Algorithms for Extending Battery Life in a Sensor Node

    Qian ZHAO  Yukikazu NAKAMOTO  Shimpei YAMADA  Koutaro YAMAMURA  Makoto IWATA  Masayoshi KAI  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1236-1244

    Wireless sensor nodes are becoming more and more common in various settings and require a long battery life for better maintainability. Since most sensor nodes are powered by batteries, energy efficiency is a critical problem. In an experiment, we observed that when peak power consumption is high, battery voltage drops quickly, and the sensor stops working even though some useful charge remains in the battery. We propose three off-line algorithms that extend battery life by scheduling sensors' execution time that is able to reduce peak power consumption as much as possible under a deadline constraint. We also developed a simulator to evaluate the effectiveness of these algorithms. The simulation results showed that one of the three algorithms dramatically can extend battery life approximately three time as long as in simultaneous sensor activation.

  • Deciding Schema k-Secrecy for XML Databases

    Chittaphone PHONHARATH  Kenji HASHIMOTO  Hiroyuki SEKI  

     
    PAPER-Static Analysis

      Vol:
    E96-D No:6
      Page(s):
    1268-1277

    We study a static analysis problem on k-secrecy, which is a metric for the security against inference attacks on XML databases. Intuitively, k-secrecy means that the number of candidates of sensitive data of a given database instance or the result of unauthorized query cannot be narrowed down to k-1 by using available information such as authorized queries and their results. In this paper, we investigate the decidability of the schema k-secrecy problem defined as follows: for a given XML database schema, an authorized query and an unauthorized query, decide whether every database instance conforming to the given schema is k-secret. We first show that the schema k-secrecy problem is undecidable for any finite k>1 even when queries are represented by a simple subclass of linear deterministic top-down tree transducers (LDTT). We next show that the schema ∞-secrecy problem is decidable for queries represented by LDTT. We give an algorithm for deciding the schema ∞-secrecy problem and analyze its time complexity. We show the schema ∞-secrecy problem is EXPTIME-complete for LDTT. Moreover, we show similar results LDTT with regular look-ahead.

  • Performance Evaluation of Interference-Aware Multi-Cell Beamforming for an Overlapping Cells Environment

    Tomoki MURAKAMI  Riichi KUDO  Takeo ICHIKAWA  Naoki HONMA  Masato MIZOGUCHI  

     
    PAPER-Antennas and Propagation

      Vol:
    E96-B No:6
      Page(s):
    1492-1501

    As wireless LAN systems become more widespread, the number of access points (APs) is increasing. A large number of APs cause overlapping cells where nearby cells utilize the same frequency channel. In the overlapping cells, inter-cell interference (ICI) degrades the throughput. This paper proposes an interference-aware multi-cell beamforming (IMB) technique to reduce the throughput degradation in the overlapping cells. The IMB technique improves transmission performance better than conventional multi-cell beamforming based on a decentralized control scheme. The conventional technique mitigates ICI by nullifying all the interference signal space (ISS) by beamforming, but the signal spaces to the user terminal (UT) is also limited because the degree of freedom (DoF) at the AP is limited. On the other hand, the IMB technique increases the signal space to the UT because the DoF at the AP is increased by selecting the ISS by allowing a small amount of ICI. In addition, we introduce a method of selecting the ISS in a decentralized control scheme. In our work, we analyze the interference channel state information (CSI) and evaluate the transmission performance of the IMB technique by using a measured CSI in an actual indoor environment. As a result, we find that the IMB technique becomes more effective as the number of UT antennas in nearby cells increases.

  • A Small-Space Algorithm for Removing Small Connected Components from a Binary Image

    Tetsuo ASANO  Revant KUMAR  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1044-1050

    Given a binary image I and a threshold t, the size-thresholded binary image I(t) defined by I and t is the binary image after removing all connected components consisting of at most t pixels. This paper presents space-efficient algorithms for computing a size-thresholded binary image for a binary image of n pixels, assuming that the image is stored in a read-only array with random-access. With regard to the problem, there are two cases depending on how large the threshold t is, namely, Relatively large threshold where t = Ω(), and Relatively small threshold where t = O(). In this paper, a new algorithmic framework for the problem is presented. From an algorithmic point of view, the problem can be solved in O() time and O() work space. We propose new algorithms for both the above cases which compute the size-threshold binary image for any binary image of n pixels in O(nlog n) time using only O() work space.

  • Reporting All Segment Intersections Using an Arbitrary Sized Work Space

    Matsuo KONAGAYA  Tetsuo ASANO  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1066-1071

    This paper presents an efficient algorithm for reporting all intersections among n given segments in the plane using work space of arbitrarily given size. More exactly, given a parameter s which is between Ω(1) and O(n) specifying the size of work space, the algorithm reports all the segment intersections in roughly O(n2/+ K) time using O(s) words of O(log n) bits, where K is the total number of intersecting pairs. The time complexity can be improved to O((n2/s) log s + K) when input segments have only some number of different slopes.

  • Write Control Method for Nonvolatile Flip-Flops Based on State Transition Analysis

    Naoya OKADA  Yuichi NAKAMURA  Shinji KIMURA  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1264-1272

    Nonvolatile flip-flop enables leakage power reduction in logic circuits and quick return from standby mode. However, it has limited write endurance, and its power consumption for writing is larger than that of conventional D flip-flop (DFF). For this reason, it is important to reduce the number of write operations. The write operations can be reduced by stopping the clock signal to synchronous flip-flops because write operations are executed only when the clock is applied to the flip-flops. In such clock gating, a method using Exclusive OR (XOR) of the current value and the new value as the control signal is well known. The XOR based method is effective, but there are several cases where the write operations can be reduced even if the current value and the new value are different. The paper proposes a method to detect such unnecessary write operations based on state transition analysis, and proposes a write control method to save power consumption of nonvolatile flip-flops. In the method, redundant bits are detected to reduce the number of write operations. If the next state and the outputs do not depend on some current bit, the bit is redundant and not necessary to write. The method is based on Binary Decision Diagram (BDD) calculation. We construct write control circuits to stop the clock signal by converting BDDs representing a set of states where write operations are unnecessary. Proposed method can be combined with the XOR based method and reduce the total write operations. We apply combined method to some benchmark circuits and estimate the power consumption with Synopsys NanoSim. On average, 15.0% power consumption can be reduced compared with only the XOR based method.

  • Anisotropic Lp Poisson Disk Sampling for NPR Image with Adaptively Shaped Pieces

    Tao WANG  Zhongying HU  Kiichi URAHAMA  

     
    LETTER-Computer Graphics

      Vol:
    E96-D No:6
      Page(s):
    1406-1409

    A non-photorealistic rendering technique is presented for generating images such as stippling images and paper mosaic images with various shapes of paper pieces. Paper pieces are spatially arranged by using an anisotropic Lp poisson disk sampling. The shape of paper pieces is adaptively varied by changing the value of p. We demonstrate with experiments that edges and details in an input image are preserved by the pieces according to the anisotropy of their shape.

  • IBShare: A Novel InfiniBand Network Bandwidth Allocation for Cloud Datacenter

    Ziwen ZHANG  Zhigang SUN  Baokang ZHAO  Jiangchuan LIU  Xicheng LU  

     
    PAPER-Network System

      Vol:
    E96-B No:6
      Page(s):
    1425-1434

    In cloud computing, multiple users coexist in one datacenter infrastructure and the network is always shared using VMs. Network bandwidth allocation is necessary for security and performance guarantees in the datacenter. InfiniBand (IB) is more widely applied in the construction of datacenter cluster and attracts more interest from the academic field. In this paper, we propose an IB dynamic bandwidth allocation mechanism IBShare to achieve different Weight-proportional and Min-guarantee requirements of allocation entities. The differentiated IB Congestion Control (CC) configuration is proven to offer the proportional throughput characteristic at the flow level. IBShare leverages distributed congestion detection, global congestion computation and configuration to dynamically provide predictable bandwidth division. The real IB experiment results showed IBShare can promptly adapt to the congestion variation and achieve the above two allocation demands through CC reconfiguration. IBShare improved the network utilization than reservation and its computation/configuration overhead was low.

  • Play-Out Constrained Dynamic Packet Loss Protection for Scalable Video Transmission

    Jun LIU  Yu ZHANG  Jian SONG  

     
    PAPER-Multimedia Systems for Communications

      Vol:
    E96-B No:6
      Page(s):
    1633-1642

    This paper analyzes the conventional unequal erasure protection (UXP) scheme for scalable video transmission, and proposes a dynamic hybrid UXP/ARQ transmission framework to improve the performance of the conventional UXP method for bandwidth-constrained scalable video transmission. This framework applies automatic retransmission request (ARQ) to the conventional UXP scheme for scalable video transmission, and dynamically adjusts the transmission time budget of each group of picture (GOP) according to the feedback about the transmission results of the current and previous GOPs from the receiver. Moreover, the parameter of target video quality is introduced and optimized to adapt to the channel condition in pursuit of more efficient dynamic time allocation. In addition, considering the play-out deadline constraint, the time schedule for the proposed scalable video transmission system is presented. Simulation results show that compared with the conventional UXP scheme and its enhanced method, the average peak signal to noise ratio (PSNR) of the reconstructed video can be improved significantly over a wide range of packet loss rates. Besides, the visual quality fluctuation among the GOPs can be reduced for the video which has much movement change.

  • Rotation-Tolerant Camera Identification Using Optimal Tradeoff Circular Harmonic Function Correlation Filter

    Dai-Kyung HYUN  Dae-Jin JUNG  Hae-Yeoun LEE  Heung-Kyu LEE  

     
    LETTER-Information Network

      Vol:
    E96-D No:6
      Page(s):
    1394-1397

    In this paper, we propose a novel camera identification method based on photo-response non-uniformity (PRNU), which performs well even with rotated videos. One of the disadvantages of the PRNU-based camera identification methods is that they are very sensitive to de-synchronization. If a video under investigation is slightly rotated, the identification process without synchronization fails. The proposed method solves this kind of out-of-sync problem, by achieving rotation-tolerance using Optimal Tradeoff Circular Harmonic Function (OTCHF) correlation filter. The experimental results show that the proposed method identifies source device with high accuracy from rotated videos.

5901-5920hit(20498hit)