The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

11741-11760hit(20498hit)

  • Essential Cycle Calculation Method for Irregular Array Redistribution

    Sheng-Wen BAI  Chu-Sing YANG  

     
    PAPER-Computation and Computational Models

      Vol:
    E89-D No:2
      Page(s):
    789-797

    In many parallel programs, run-time array redistribution is usually required to enhance data locality and reduce remote memory access on the distributed memory multicomputers. In general, array distribution can be classified into regular distribution and irregular distribution according to the distribution fashion. Many methods for performing regular array redistribution have been presented in the literature. However, for the heterogeneous computation environment, irregular array redistributions can be used to adjust data assignment at run-time. In this paper, an Essential Cycle Calculation method for unequal block sizes array redistribution is presented. In the ECC method, a processor first computes the source/destination processor/data sets of array elements in the first essential cycle of the local array it owns. From the source/destination processor/data sets of array elements in the first essential cycle, we can construct packing/unpacking pattern tables. Since each essential cycle has the same communication pattern, based on the packing/unpacking pattern tables, a processor can pack/unpack array elements efficiently. To evaluate the performance of the ECC method, we have implemented this method on an IBM SP2 parallel machine and compare it with the Sequence method. The cost models for these methods are also presented. The experimental results show that the ECC method greatly outperforms the Sequence method for all test samples.

  • Efficient Algorithms for Constructing a Pyramid from a Terrain

    Jinhee CHUN  Kunihiko SADAKANE  Takeshi TOKUYAMA  

     
    PAPER-Computational Geometry

      Vol:
    E89-D No:2
      Page(s):
    783-788

    In [5], the following pyramid construction problem was proposed: Given nonnegative valued functions ρ and µ in d variables, we consider the optimal pyramid maximizing the total parametric gain of ρ against µ. The pyramid can be considered as the optimal unimodal approximation of ρ relative to µ, and can be applied to hierarchical data segmentation. In this paper, we give efficient algorithms for a couple of two-dimensional pyramid construction problems.

  • Measuring the Perceived Importance of Speech Segments for Transmission over IP Networks Open Access

    Yusuke HIWASAKI  Toru MORINAGA  Jotaro IKEDO  Akitoshi KATAOKA  

     
    PAPER

      Vol:
    E89-B No:2
      Page(s):
    326-333

    This paper presents a way of using a linear regression model to produce a single-valued criterion that indicates the perceived importance of each block in a stream of speech blocks. This method is superior to the conventional approach, voice activity detection (VAD), in that it provides a dynamically changing priority value for speech segments with finer granularity. The approach can be used in conjunction with scalable speech coding techniques in the context of IP QoS services to achieve a flexible form of quality control for speech transmission. A simple linear regression model is used to estimate a mean opinion score (MOS) of the various cases of missing speech segments. The estimated MOS is a continuous value that can be mapped to priority levels with arbitrary granularity. Through subjective evaluation, we show the validity of the calculated priority values.

  • Generation of Zero Pronouns Based on the Centering Theory and Pairwise Salience of Entities

    Ji-Eun ROH  Jong-Hyeok LEE  

     
    PAPER-Natural Language Processing

      Vol:
    E89-D No:2
      Page(s):
    837-846

    This paper investigates zero pronouns in Korean, especially focusing on the center transitions of adjacent utterances under the framework of Centering Theory. Four types of nominal entity (Epair, Einter, Eintra, and Enon) from Centering Theory are defined with the concept of inter-, intra-, and pairwise salience. For each entity type, a case study of zero phenomena is performed through analyzing corpus and building a pronominalization model. This study shows that the zero phenomena of entities which have been neglected in previous Centering works are explained via the center transition of the second previous utterance, and provides valuable results for pronominalization of such entities, such as p2-trans rule. We improve the accuracy of pronominalization model by optimal feature selection and show that our accuracy outperforms the accuracy of previous works.

  • Class Mapping for End-to-End Guaranteed Service with Minimum Price over DiffServ Networks

    Dai-boong LEE  Hwangjun SONG  Inkyu LEE  

     
    PAPER-Network

      Vol:
    E89-B No:2
      Page(s):
    460-471

    Differentiated-services model has been prevailed as a scalable solution to provide quality of service over the Internet. Many researches have been focused on per hop behavior or a single domain behavior to enhance quality of service. Thus, there are still difficulties in providing the end-to-end guaranteed service when the path between sender and receiver includes multiple domains. Furthermore differentiated-services model mainly considers quality of service for traffic aggregates due to the scalability, and the quality of service state may be time varying according to the network conditions in the case of relative service model, which make the problem more challenging to guarantee the end-to-end quality-of-service. In this paper, we study class mapping mechanisms along the path to provide the end-to-end guaranteed quality of service with the minimum networking price over multiple differentiated-services domains. The proposed mechanism includes an effective implementation of relative differentiated-services model, quality of service advertising mechanism and class selecting mechanisms. Finally, the experimental results are provided to show the performance of the proposed algorithm.

  • Dynamic Class Mapping Scheme for Prioritized Video Transmission in Differentiated Services Network

    Gooyoun HWANG  Jitae SHIN  JongWon KIM  

     
    PAPER

      Vol:
    E89-B No:2
      Page(s):
    393-400

    This paper introduces a network-aware video delivery framework where the quality-of-service (QoS) interaction between prioritized packet video and relative differentiated service (DiffServ) network is taken into account. With this framework, we propose a dynamic class mapping (DCM) scheme to allow video applications to cope with service degradation and class-based resource constraint in a time-varying network environment. In the proposed scheme, an explicit congestion notification (ECN)-based feedback mechanism is utilized to notify the status of network classes and the received service quality assessment to the end-host applications urgently. Based on the feedback information, DCM agent at ingress point can dynamically re-map each packet onto a network class in order to satisfy the desired QoS requirement. Simulation results verify the enhanced QoS performance of the streaming video application by comparing the static class-mapping and the class re-mapping based on loss-driven feedback.

  • An Algorithm for Node-to-Set Disjoint Paths Problem in Bi-Rotator Graphs

    Keiichi KANEKO  

     
    PAPER-Parallel/Distributed Algorithms

      Vol:
    E89-D No:2
      Page(s):
    647-653

    An algorithm is described for solving the node-to-set disjoint paths problem in bi-rotator graphs, which are obtained by making each edge of a rotator graph bi-directional. The algorithm is of polynomial order of n for an n-bi-rotator graph. It is based on recursion and divided into three cases according to the distribution of destination nodes in the classes into which the nodes in a bi-rotator graph are categorized. We estimated that it obtains 2n-3 disjoint paths with a time complexity of O(n5), that the sum of the path lengths is O(n3), and that the length of the maximum path is O(n2). Computer experiment showed that the average execution time was O(n3.9) and, the average sum of the path lengths was O(n3.0).

  • A Security Middleware Model for Real-Time Applications on Grids

    Tao XIE  Xiao QIN  

     
    PAPER-Grid Computing

      Vol:
    E89-D No:2
      Page(s):
    631-638

    Real-time applications are indispensable for conducting research and business in government, industry, and academic organizations. Recently, real-time applications with security requirements increasingly emerged in large-scale distributed systems such as Grids. However, the complexities and specialties of diverse security mechanisms dissuade users from employing existing security services for their applications. To effectively tackle this problem, in this paper we propose a security middleware (SMW) model from which security-sensitive real-time applications are enabled to exploit a variety of security services to enhance the trustworthy executions of the applications. A quality of security control manager (QSCM), a centerpiece of the SMW model, has been designed and implemented to achieve a flexible trade-off between overheads caused by security services and system performance, especially under situations where available resources are dynamically changing and insufficient. A security-aware scheduling mechanism, which plays an important role in QSCM, is capable of maximizing quality of security for real-time applications running in distributed systems as large-scale as Grids. Our empirical studies based on real world traces from a supercomputing center demonstratively show that the proposed model can significantly improve the performance of Grids in terms of both security and schedulability.

  • A Multi-Projector Display System with Virtual Camera Method for Distortion Correction on Quadric Surface Screens

    Masato OGATA  Hiroyuki WADA  Kagenori KAJIHARA  Jeroen van BAAR  

     
    PAPER-Computer Graphics

      Vol:
    E89-D No:2
      Page(s):
    814-824

    Multi-projector technology has been under consideration in recent years. This technology allows the generation of wide field of view and high-resolution images in a cost-effective manner. It is expected to be applied extensively to training simulators where vivid immersive sensations and precision are required. However, in many systems the viewing frustums cannot be automatically assigned for distributed rendering, and the required manual setup is complicated and difficult. This is because the camera should be coincide exactly with a desired eye point to avoid perspective distortions. For the actual applications, the camera is seldom able to be set up at the desired eye point because of physical constraints, e.g., a narrow cockpit with many instruments. To resolve this issue, we have developed a "virtual camera method" that yields high-precision calibration regardless of the camera position. This method takes advantage of the quadratic nature of the display surface. We developed a practical real-time multi-projector display system for applications such as training simulators, that require high-accuracy in geometry and rapid response time.

  • An Anomaly Intrusion Detection System Based on Vector Quantization

    Jun ZHENG  Mingzeng HU  

     
    PAPER-Intrusion Detection

      Vol:
    E89-D No:1
      Page(s):
    201-210

    Machine learning and data mining algorithms are increasingly being used in the intrusion detection systems (IDS), but their performances are laggard to some extent especially applied in network based intrusion detection: the larger load of network traffic monitoring requires more efficient algorithm in practice. In this paper, we propose and design an anomaly intrusion detection (AID) system based on the vector quantization (VQ) which is widely used for data compression and high-dimension multimedia data index. The design procedure optimizes the performance of intrusion detection by jointly accounting for accurate usage profile modeling by the VQ codebook and fast similarity measures between feature vectors to reduce the computational cost. The former is just the key of getting high detection rate and the later is the footstone of guaranteeing efficiency and real-time style of intrusion detection. Experiment comparisons to other related researches show that the performance of intrusion detection is improved greatly.

  • Resource Adaptation Scheme for QoS Provisioning in Pervasive Computing Environments: A Welfare Economic Approach

    Wonjun LEE  Eunkyo KIM  Dongshin KIM  Choonhwa LEE  

     
    PAPER-Networks

      Vol:
    E89-D No:1
      Page(s):
    248-255

    Management of applications in the new world of pervasive computing requires new mechanisms to be developed for admission control, QoS negotiation, allocation and scheduling. To solve such resource-allocation and QoS provisioning problems within pervasive and ubiquitous computational environments, distribution and decomposition of the computation are important. In this paper we present a QoS-based welfare economic resource management model that models the actual price-formation process of an economy. We compare our economy-based approach with a mathematical approach we previously proposed. We use the constructs of application benefit functions and resource demand functions to represent the system configuration and to solve the resource allocation problems. Finally empirical studies are conducted to evaluate the performance of our proposed pricing model and to compare it with other approaches such as priority-based scheme and greedy method.

  • Security Protocols Protection Based on Anomaly Detection

    Abdulrahman ALHARBY  Hideki IMAI  

     
    PAPER-Intrusion Detection

      Vol:
    E89-D No:1
      Page(s):
    189-200

    Security protocols flaws represent a substantial portion of security exposures of data networks. In order to evaluate security protocols against any attack, formal methods are equipped with a number of techniques. Unfortunately, formal methods are applicable for static state only, and don't guarantee detecting all possible flaws. Therefore, formal methods should be complemented with dynamic protection. Anomaly detection systems are very suitable for security protocols environments as dynamic activities protectors. This paper presents an intrusion detection system that uses a number of different anomaly detection techniques to detect attacks against security protocols.

  • Computer-Aided Diagnosis of Intracranial Aneurysms in MRA Images with Case-Based Reasoning

    Syoji KOBASHI  Katsuya KONDO  Yutaka HATA  

     
    PAPER-Biological Engineering

      Vol:
    E89-D No:1
      Page(s):
    340-350

    Finding intracranial aneurysms plays a key role in preventing serious cerebral diseases such as subarachnoid hemorrhage. For detection of aneurysms, magnetic resonance angiography (MRA) can provide detailed images of arteries non-invasively. However, because over 100 MRA images per subject are required to cover the entire cerebrum, image diagnosis using MRA is very time-consuming and labor-intensive. This article presents a computer-aided diagnosis (CAD) system for finding aneurysms with MRA images. The principal components are identification of aneurysm candidates (= ROIs; regions of interest) from MRA images and estimation of a fuzzy degree for each aneurysm candidate based on a case-based reasoning (CBR). The fuzzy degree indicates whether a candidate is true aneurysm. Our system presents users with a limited number of ROIs that have been sorted in order of fuzzy degree. Thus, this system can decrease the time and the labor required for detecting aneurysms. Experimental results using phantoms indicate that the system can detect all aneurysms at branches of arteries and all saccular aneurysms produced by dilation of a straight artery in 1 direction perpendicular to the principal axis. In a clinical evaluation, performance in finding aneurysms and estimating the fuzzy degree was examined by applying the system to 16 subjects with a total of 19 aneurysms. The experimental results indicate that this CAD system detected all aneurysms except a fusiform aneurysm, and gave high fuzzy degrees and high priorities for the detected aneurysms.

  • Decision Directed Scheme for IQ Imbalance Compensation on OFCDM Direct Conversion Receiver

    Tadaaki YUBA  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:1
      Page(s):
    184-190

    Recently, the direct conversion scheme has been actively investigated for the purpose of cost miniaturization and low power consumption of wireless receivers. IQ imbalance is one of the problems for the direct conversion receiver. In the case of OFCDM modulations, this IQ imbalance causes intercarrier interference (ICI) in the demodulated signals. In this paper, the decision directed scheme for IQ imbalance compensation is proposed. In the proposed scheme, the combination of received symbols which satisfies orthogonality conditions is used for compensation of IQ imbalance. Therefore, in addition to the pilot symbols, the received symbols can be used in order to improve the accuracy of the compensation matrix and BER can be reduced.

  • Maintaining Picture Quality and Improving Robustness of Color Watermarking by Using Human Vision Models

    Hiroshi YOSHIURA  Isao ECHIZEN  

     
    PAPER-Application Information Security

      Vol:
    E89-D No:1
      Page(s):
    256-270

    Digital watermarks on pictures are more useful when they are better able to survive image processing operations and when they cause less degradation of picture quality. Random geometric distortion is one of the most difficult kinds of image processing for watermarks to survive because of the difficulty of synchronizing the expected watermark patterns to the watermarks embedded in pictures. This paper proposes three methods to improve a previous method that is not affected by this difficulty but that is insufficient in maintaining picture quality and treating other problems in surviving image processing. The first method determines the watermark strength in L*u*v* space, where human-perceived degradation of picture quality can be measured in terms of Euclidian distance, but embeds and detects watermarks in YUV space, where the detection is more reliable. The second method, based on the knowledge of image quantization, uses the messiness of color planes to hide watermarks. The third method reduces detection noises by preprocessing the watermarked image with orientation-sensitive image filtering, which is especially effective in picture portions where pixel values change drastically. Subjective evaluations have shown that these methods improved the picture quality of the previous method by 0.5 point of the mean evaluation score at the representative example case. On the other hand, the watermark strength of the previous method could be increased by 30% through 60% while keeping the same picture quality. Robustness to image processing has been evaluated for random geometric distortion, JPEG compression, Gaussian noise addition, and median filtering and it was clarified that these methods reduced the detection error ratio to 1/10 through 1/4. These methods can be applied not only to the previous method but also to other types of pixel-domain watermarking such as the Patchwork watermarking method and, with modification, to frequency-domain watermarking.

  • A Novel Test-Bed for Immersive and Interactive Broadcasting Production Using Augmented Reality and Haptics

    Seungjun KIM  Jongeun CHA  Jongphil KIM  Jeha RYU  Seongeun EOM  Nitaigour P. MAHALIK  Byungha AHN  

     
    LETTER

      Vol:
    E89-D No:1
      Page(s):
    106-110

    In this paper, we demonstrate an immersive and interactive broadcasting production system with a new haptically enhanced multimedia broadcasting chain. The system adapts Augmented Reality (AR) techniques, which merges captured videos and virtual 3D media seamlessly through multimedia streaming technology, and haptic interaction technology in near real-time. In this system, viewers at the haptic multimedia client can interact with AR broadcasting production transmitted via communication network. We demonstrate two test applications, which show that the addition of AR- and haptic-interaction to the conventional audio-visual contents can improve immersiveness and interactivity of viewers with rich contents service.

  • Registration of Partial 3D Point Clouds Acquired from a Multi-view Camera for Indoor Scene Reconstruction

    Sehwan KIM  Woontack WOO  

     
    PAPER

      Vol:
    E89-D No:1
      Page(s):
    62-72

    In this paper, a novel projection-based method is presented to register partial 3D point clouds, acquired from a multi-view camera, for 3D reconstruction of an indoor scene. In general, conventional registration methods for partial 3D point clouds require a high computational complexity and much time for registration. Moreover, these methods are not robust for 3D point cloud which has a low precision. To overcome these drawbacks, a projection-based registration method is proposed. Firstly, depth images are refined based on both temporal and spatial properties. The former involves excluding 3D points with large variation, and the latter fills up holes referring to four neighboring 3D points, respectively. Secondly, 3D point clouds acquired from two views are projected onto the same image plane, and two-step integer mapping is applied to search for correspondences through the modified KLT. Then, fine registration is carried out by minimizing distance errors based on adaptive search range. Finally, we calculate a final color referring to the colors of corresponding points and reconstruct an indoor scene by applying the above procedure to consecutive scenes. The proposed method not only reduces computational complexity by searching for correspondences on a 2D image plane, but also enables effective registration even for 3D points which have a low precision. Furthermore, only a few color and depth images are needed to reconstruct an indoor scene. The generated model can be adopted for interaction with as well as navigation in a virtual environment.

  • Wearable Telepresence System Based on Multimodal Communication for Effective Teleoperation with a Humanoid

    Yong-Ho SEO  Hun-Young PARK  Taewoo HAN  Hyun Seung YANG  

     
    PAPER

      Vol:
    E89-D No:1
      Page(s):
    11-19

    This paper presents a new type of wearable teleoperation system that can be applied to the control of a humanoid robot. The proposed system has self-contained computing hardware with a stereo head-mounted display, a microphone, a set of headphones, and a wireless LAN. It also has a mechanism that tracks arm and head motion by using several types of sensors that detect the motion data of an operator, along with a simple force reflection mechanism that uses vibration motors at appropriate joints. For remote tasks, we use intelligent self-sensory feedback and autonomous behavior, such as automatic grasping and obstacle avoidance in a slave robot, and we feed the information back to an operator through a multimodal communication channel. Through this teleoperation system, we successfully demonstrate several teleoperative tasks, including object manipulation and mobile platform control of a humanoid robot.

  • 10 GHz Low-Noise Low-Power Monolithic Integrated VCOs in Digital CMOS Technology

    Zheng GU  Andreas THIEDE  

     
    PAPER-Electronic Circuits

      Vol:
    E89-C No:1
      Page(s):
    88-93

    This paper presents the design of low-power low-noise 10 GHz CMOS monolithic integrated LC VCOs suitable for data clock recovery architectures in optical receivers of SDH (STM-64) and SONET (OC-192). Optimizations of device parameters and passive components are given in detail. For passive components, differential and single-ended inductor structures as well as MOS varactors with and without lightly doped drain/source (LDD) implantation have been investigated. The VCOs implemented in a 0.18 µm process demonstrate the single-side-band phase noise of as low as -107 dBc/Hz at 1 MHz offset and 21% tuning range while consuming only 7 mW under 1.8 V supply.

  • Investigation on 10 m Semi Anechoic Chamber by Using Grid-Ferrite and Open-Top Hollow Pyramidal EM Wave Absorber

    Hiroshi KURIHARA  Toshifumi SAITO  Yoshikazu SUZUKI  Kouji NAGATA  Masaharu ADACHI  

     
    PAPER

      Vol:
    E89-C No:1
      Page(s):
    16-23

    This paper investigates the 10 m semi anechoic chamber using a new type hybrid EM wave absorber consisted of the grid-ferrite and the open-top hollow pyramidal EM wave absorber. We designed a new type hybrid EM wave absorber, which length could be slightly realized 65 cm. The 10 m semi anechoic chamber was constructed in the size of L21.5 mW13.5 mH8.9 m as the result of the ray-tracing simulation using this absorber. Then, the site attenuation in the constructed anechoic chamber was measured by using the broadband calculable dipole antennas. As the result, the maximum deviations between the measured site attenuation and theoretical calculated one were obtained within 3.6 dB in the frequency range of 30 MHz to 300 MHz. It was confirmed the validity of a new type hybrid EM wave absorber. Moreover, it was confirmed that the measured results agree with the ray-tracing simulation results, in which the differences are about 1.5 dB.

11741-11760hit(20498hit)