The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

12141-12160hit(20498hit)

  • Near-Field Sound-Source Localization Based on a Signed Binary Code

    Miki SATO  Akihiko SUGIYAMA  Osamu HOSHUYAMA  Nobuyuki YAMASHITA  Yoshihiro FUJITA  

     
    PAPER-Digital Signal Processing

      Vol:
    E88-A No:8
      Page(s):
    2078-2086

    This paper proposes near-field sound-source localization based on crosscorrelation of a signed binary code. The signed binary code eliminates multibit signal processing for simpler implementation. Explicit formulae with near-field assumption are derived for a two microphone scenario and extended to a three microphone case with front-rear discrimination. Adaptive threshold for enabling and disabling source localization is developed for robustness in noisy environment. The proposed sound-source localization algorithm is implemented on a fixed-point DSP. Evaluation results in a robot scenario demonstrate that near-field assumption and front-rear discrimination provides almost 40% improvement in DOA estimation. A correct detection rate of 85% is obtained by a robot in a home environment.

  • Extraction of Desired Spectra Using ICA Regression with DOAS

    Hyeon-Ho KIM  Sung-Hwan HAN  Hyeon-Deok BAE  

     
    LETTER-Measurement Technology

      Vol:
    E88-A No:8
      Page(s):
    2244-2246

    Recently, DOAS (differential optical absorption spectroscopy) has been used for nondestructive air monitoring, in which the LS (least squares) method is used to calculate trace gas concentrations due to its computational simplicity. This paper applies the ICA (independent component analysis) method to the DOAS system of air monitoring, since the LS method is insufficient to recover the desired spectra perfectly due to sparsity characteristic. If the sparsity of reference spectra in the DOAS system imposes the assumption of independence, the ICA algorithm can be used. The proposed method is used to regress the observed spectrum on the estimates of the reference spectra. The ICA algorithm can be seen as a preprocessing method where the ICs of the references are used as the input in the regression. The performance of the proposed method is evaluated in simulation studies using synthetic data.

  • Handwritten Numeral String Recognition: Effects of Character Normalization and Feature Extraction

    Cheng-Lin LIU  Hiroshi SAKO  Hiromichi FUJISAWA  

     
    PAPER-String Recognition

      Vol:
    E88-D No:8
      Page(s):
    1791-1798

    The performance of integrated segmentation and recognition of handwritten numeral strings relies on the classification accuracy and the non-character resistance of the underlying character classifier, which is variable depending on the techniques of pattern normalization, feature extraction, and classifier structure. In this paper, we evaluate the effects of 12 normalization functions and four selected feature types on numeral string recognition. Slant correction (deslant) is combined with the normalization functions and features so as to create 96 feature vectors, which are classified using two classifier structures. In experiments on numeral string images of the NIST Special Database 19, the classifiers have yielded very high string recognition accuracies. We show the superiority of moment normalization with adaptive aspect ratio mapping and the gradient direction feature, and observed that slant correction is beneficial to string recognition when combined with good normalization methods.

  • 2-D Model for Calculating Current Density Distribution and Flux-Flow Resistivity of MCP BSCCO-2212 Rod during Quenching Process in Self Field

    Jian LI  Mingzhe RONG  

     
    PAPER-Contactors & Circuit Breakers

      Vol:
    E88-C No:8
      Page(s):
    1659-1663

    This paper presents a 2-D model for calculating the current density distribution and the flux-flow resistivity of a Melt Cast Process BSCCO 2212 rod during the quenching process in self field with large current density. Based on the forces analysis of the flux-line lattice, the equilibrium equation for the 2-D viscous flux motion is derived from the model. With this equation, the current density distribution and the flux density distribution are obtained in not only the critical state but also the flux-flow state. Subsequently, the average flux-flow resistivity is calculated with the knowledge of the 2-D field distribution. The calculation results are in accordance with the experimental results. Finally, the applications of the 2-D model are extended to the superconducting tube and the low-Tc superconductor.

  • Efficient Blind MAI Suppression in DS/CDMA Systems by Embedded Constraint Parallel Projection Techniques

    Masahiro YUKAWA  Renato L.G. CAVALCANTE  Isao YAMADA  

     
    PAPER-Digital Signal Processing

      Vol:
    E88-A No:8
      Page(s):
    2062-2071

    This paper presents two novel blind set-theoretic adaptive filtering algorithms for suppressing "Multiple Access Interference (MAI)," which is one of the central burdens in DS/CDMA systems. We naturally formulate the problem of MAI suppression as an asymptotic minimization of a sequence of cost functions under some linear constraint defined by the desired user's signature. The proposed algorithms embed the constraint into the direction of update, and thus the adaptive filter moves toward the optimal filter without stepping away from the constraint set. In addition, using parallel processors, the proposed algorithms attain excellent performance with linear computational complexity. Geometric interpretation clarifies an advantage of the proposed methods over existing methods. Simulation results demonstrate that the proposed algorithms achieve (i) much higher speed of convergence with rather better bit error rate performance than other blind methods and (ii) much higher speed of convergence than the non-blind NLMS algorithm (indeed, the speed of convergence of the proposed algorithms is comparable to the non-blind RLS algorithm).

  • Flat-Topped Spectral Response in a Ladder-Type Interferometric Filter

    Seok-Hwan JEONG  Shinji MATSUO  Yuzo YOSHIKUNI  Toru SEGAWA  Yoshitaka OHISO  Hiroyuki SUZUKI  

     
    PAPER-Optoelectronics

      Vol:
    E88-C No:8
      Page(s):
    1747-1754

    We propose and demonstrate a novel ladder interferometric filter that exhibits flat-topped spectral response for use in wavelength-division-multiplexing (WDM) based photonic networks. We numerically analyze the flattened spectral response in a ladder-type filter by modifying the transfer matrix of ladder interferometer. Conventional parabolic-shaped and flat-topped-designed ladder interferometric filters are fabricated, and characterized. We demonstrate a flat-topped filter response in the fabricated device. The shape factor, which is defined by the ratio of -1 dB bandwidth to -10 dB bandwidth, is improved from 0.32 to 0.54. The tunability and the increase in filter extinction ratio of the proposed device are also discussed.

  • Influence of Phantom Shell on SAR Measurement in 3-6 GHz Frequency Range

    Teruo ONISHI  Shinji UEBAYASHI  

     
    PAPER-Biological Effects

      Vol:
    E88-B No:8
      Page(s):
    3257-3262

    This paper presents the results of an investigation on the effect of a thin low-dielectric material (phantom shell) on measuring the Specific Absorption Rate (SAR) in the frequency range of 3 to 6 GHz. The International Electrotechnical Commission (IEC) has started to develop a SAR measurement procedure in order to cover such frequencies. In the procedure, the SAR is measured in a liquid phantom, which is a shell filled with tissue-equivalent liquid. Although the shell is thin and has low-dielectric properties, the influence of the phantom shell is thought to increase at higher frequencies. Therefore, an investigation using the transmission line model and the Finite-Difference Time-Domain (FD-TD) method was conducted. To verify the FD-TD results, measurements were also carried out. The calculation results using the FD-TD method agree well with the measurement results. If the frequency is higher, the SAR is affected by the shell even though the shell is thinner and has much lower dielectric properties than those of the tissue-equivalent liquid. Specifically, the SAR with the shell is approximately 1.3 times higher than without the shell at 5.2 GHz for the maximum case. The deviations in the loss and the thickness for the shell do not affect the SAR more than the relative permittivity.

  • LMI-Based Neurocontroller for State-Feedback Guaranteed Cost Control of Discrete-Time Uncertain System

    Hiroaki MUKAIDANI  Yasuhisa ISHII  Nan BU  Yoshiyuki TANAKA  Toshio TSUJI  

     
    PAPER-Neural Networks and Fuzzy Systems

      Vol:
    E88-D No:8
      Page(s):
    1903-1911

    The application of neural networks to the state-feedback guaranteed cost control problem of discrete-time system that has uncertainty in both state and input matrices is investigated. Based on the Linear Matrix Inequality (LMI) design, a class of a state feedback controller is newly established, and sufficient conditions for the existence of guaranteed cost controller are derived. The novel contribution is that the neurocontroller is substituted for the additive gain perturbations. It is newly shown that although the neurocontroller is included in the discrete-time uncertain system, the robust stability for the closed-loop system and the reduction of the cost are attained.

  • Invasiveness of an Optical Magnetic Field Probe

    Satoru ARAKAWA  Eiji SUZUKI  Hiroyasu OTA  Ken Ichi ARAI  Risaburo SATO  

     
    PAPER-Measurements

      Vol:
    E88-B No:8
      Page(s):
    3170-3175

    Electromagnetic field probes inevitably disturb the original distribution of the field when they are positioned close to a device. This disturbance in turn affects measurement accuracy and device operation. We developed an optical magnetic field probe, comprising a loop antenna element and an electro-optic crystal, for highly accurate magnetic near-field measurement in the GHz frequency range. We analyzed the invasiveness of the optical magnetic field probe quantitatively both experimentally and using finite difference time domain simulation. We found that eliminating the metal cable reduced the disturbance of the surrounding field that was to be measured. In addition, we investigated the magnetic field detection characteristics of the probe and its influence on the operation of a microstrip line. The optical magnetic field probe was less invasive and provided more accurate measurement.

  • An Effective Built-In Self-Test for Chargepump PLL

    Junseok HAN  Dongsup SONG  Hagbae KIM  YoungYong KIM  Sungho KANG  

     
    LETTER

      Vol:
    E88-C No:8
      Page(s):
    1731-1733

    In order to provide an efficient test method for PLL which is a mixed-signal circuit widely used in most of SoCs, a novel BIST method is developed. The new BIST uses the change of phase differences generated by selectively alternating the feedback frequency. It provides an efficient structural test, reduces an area overhead and improves the test accessibility.

  • Genetic Design Method for Near-Optimal Training Sequences in Wideband Spatial Multiplexing Systems

    Toshiaki KOIKE  Hidekazu MURATA  Susumu YOSHIDA  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E88-B No:8
      Page(s):
    3488-3492

    In spatial multiplexing systems using multiple antennas, the error-rate performance is heavily dependent on the residual channel estimation error. In this letter, we propose a design method that uses the genetic algorithms to optimize training sequences for accurate channel estimation.

  • Estimation of Short Range Multiple Coherent Source Location by Using MUSIC Algorithm

    Takashi KATO  Kazumasa TAIRA  Kunio SAWAYA  Risaburo SATO  

     
    LETTER

      Vol:
    E88-B No:8
      Page(s):
    3317-3320

    An estimation method of source location of undesired electromagnetic wave from electronic devices by using the MUSIC algorithm is proposed. The MUSIC algorithm can estimate the direction of arrival accurately, however, the estimation error is large in the case of short range multiple coherent sources. In order to overcome this problem, a method to improve the estimation accuracy is presented. Experimental results show that the proposed method can reduce the maximum estimation error from 7 cm of the conventional method to 2 cm.

  • SoC R&D Trend for Future Digital Life

    Ki Won LEE  

     
    INVITED PAPER

      Vol:
    E88-C No:8
      Page(s):
    1705-1710

    This paper depicts the future R&D direction and the importance of SoC (System-on-Chip) based on a forecast of the Consumer Electronics trend in the Digital Convergence Era. Real-life examples of Samsung Electronics in order to solidify the competitiveness of its set products are presented.

  • Optimal Design of Complex Two-Channel IIR QMF Banks with Equiripple Response

    Ju-Hong LEE  Yuan-Hau YANG  

     
    PAPER-Digital Signal Processing

      Vol:
    E88-A No:8
      Page(s):
    2143-2153

    The optimal design of complex infinite impulse response (IIR) two-channel quadrature mirror filter (QMF) banks with equiripple frequency response is considered. The design problem is appropriately formulated to result in a simple optimization problem. Therefore, based on a variant of Karmarkar's algorithm, we can efficiently solve the optimization problem through a frequency sampling and iterative approximation method to find the complex coefficients for the IIR QMFs. The effectiveness of the proposed technique is to form an appropriate Chebyshev approximation of a desired response and then find its solution from a linear subspace in several iterations. Finally, simulation results are presented for illustration and comparison.

  • Scalable Optical Fiber Wiring System for over 10,000-Fiber Shuffler

    Yoshiteru ABE  Masaru KOBAYASHI  Mamoru HIRAYAMA  Ryo NAGASE  

     
    PAPER-Optoelectronics

      Vol:
    E88-C No:8
      Page(s):
    1755-1763

    The increasing number of channels in dense wavelength division multiplexing (DWDM) systems has led to the need for wiring involving a large number of optical fibers in the system racks. We have developed a novel scalable optical fiber wiring system designed to realize as many as 10,000-fiber shuffled interconnections without fiber congestion. We propose a scheme for constructing a large-scale shuffler capable of permuting interconnected fibers that employs plural optical fiber sheets, and for arranging optical fibers without congestion in racks. We constructed a 16,384-fiber shuffler system with sixty-four 256-fiber shuffler sheets and 16-fiber fiber physical contact (FPC) connectors for a 128128 switch system with 1128 planar lightwave circuit (PLC) type thermo-optic switches (TOSW). Input here the part of summary.

  • Short-Term QoS Deficit Round Robin: An Efficient Scheduling Scheme for E-PON Systems

    Myoung-Hun KIM  Hong-Shik PARK  

     
    PAPER-Switching for Communications

      Vol:
    E88-B No:8
      Page(s):
    3321-3328

    In this paper, a design alternative for guaranteeing short-term QoS in the E-PON (Ethernet-Passive Optical Network) OLT (Optical Line Terminal) node is studied. A scheduling algorithm called Short-term QoS Deficit Round Robin (SQ-DRR) is proposed to guarantee tunable deterministic QoS constraints for multimedia applications over E-PON. The major appealing aspect of the scheduler is that it guarantees delay constraint for short-term aggregate burst traffic violating pre-contracted descriptors at the same time without loosing long-term fairness. We then evaluate the scheduler performance with and without admission control scheme under non-stationary long-range dependence (LRD) traffic. The simulation results indicate that the SQ-DRR performs well in dynamic burst traffic conditions.

  • A Simple Step-by-Step Decoding of Binary BCH Codes

    Ching-Lung CHR  Szu-Lin SU  Shao-Wei WU  

     
    LETTER-Coding Theory

      Vol:
    E88-A No:8
      Page(s):
    2236-2239

    In this letter, we propose a simplified step-by-step decoding algorithm for t-error-correcting binary Bose-Chaudhuri- Hocquenghem (BCH) codes based on logical analysis. Compared to the conventional step-by-step decoding algorithm, the computation complexity of this decoder is much less, since it significantly reduces the matrix calculation and the operations of multiplication.

  • Frequency Selective Shielding Screen by the Use of Artificial Media

    Tohru IWAI  Kennichi HATAKEYAMA  

     
    PAPER-Others

      Vol:
    E88-B No:8
      Page(s):
    3294-3299

    We calculated the shielding characteristic of a three-dimensional array of strip conductors by using the electric field integral equation method and its expansion to an array structure. From reflection coefficients, the effective permittivity of the array is calculated. The effective permittivity becomes negative in the frequency range above resonance, in which the electromagnetic waves travel through the material in an evanescent mode and the transmission coefficient becomes very small.

  • Spiking Neural Network Inter-Spike Time Based Decoding Scheme

    Hesham H. AMIN  Robert H. FUJII  

     
    PAPER-Neural Networks and Fuzzy Systems

      Vol:
    E88-D No:8
      Page(s):
    1893-1902

    Information transmission among biological neurons is carried out by a complex series of spike signals. The input inter-spike arrival times at a neuron are believed to carry information which the neurons utilize to carry out a task. In this paper, a new scheme which utilizes the input inter-spike intervals (ISI) for decoding an input spike train is proposed. A spike train consists of a sequence on input spikes with various inter-spike times. This decoding scheme can also be used for neurons which have multiple synaptic inputs but for which each synapse receives a single spike within one input time window. The ISI decoding neural network requires only a few neurons. Example applications show the usefulness of the decoding scheme.

  • Document Image Retrieval for QA Systems Based on the Density Distributions of Successive Terms

    Koichi KISE  Shota FUKUSHIMA  Keinosuke MATSUMOTO  

     
    PAPER-Document Image Retrieval

      Vol:
    E88-D No:8
      Page(s):
    1843-1851

    Question answering (QA) is the task of retrieving an answer in response to a question by analyzing documents. Although most of the efforts in developing QA systems are devoted to dealing with electronic text, we consider it is also necessary to develop systems for document images. In this paper, we propose a method of document image retrieval for such QA systems. Since the task is not to retrieve all relevant documents but to find the answer somewhere in documents, retrieval should be precision oriented. The main contribution of this paper is to propose a method of improving precision of document image retrieval by taking into account the co-occurrence of successive terms in a question. The indexing scheme is based on two-dimensional distributions of terms and the weight of co-occurrence is measured by calculating the density distributions of terms. The proposed method was tested by using 1253 pages of documents about the major league baseball with 20 questions and found that it is superior to the baseline method proposed by the authors.

12141-12160hit(20498hit)