The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

14461-14480hit(20498hit)

  • Measurement System of Jaw Movements by Using BP Neural Networks Method and a Nonlinear Least-Squares Method

    Xu ZHANG  Masatake AKUTAGAWA  Qinyu ZHANG  Hirofumi NAGASHINO  Rensheng CHE  Yohsuke KINOUCHI  

     
    PAPER-Medical Engineering

      Vol:
    E85-D No:12
      Page(s):
    1946-1954

    The jaw movements can be measured by estimating the position and orientation of two small permanent magnets attached on the upper and lower jaws. It is a difficult problem to estimate the positions and orientations of the magnets from magnetic field because it is a typical inverse problem. The back propagation neural networks (BPNN) are applicable to solve this problem in short processing time. But its precision is not enough to apply to practical measurement. In the other hand, precise estimation is possible by using the nonlinear least-square (NLS) method. However, it takes long processing time for iterative calculation, and the solutions may be trapped in the local minima. In this paper, we propose a precise and fast measurement system which makes use of the estimation algorithm combining BPNN with NLS method. In this method, the BPNN performs an approximate estimation of magnet parameters in short processing time, and its result is used as the initial value of iterative calculation of NLS method. The cost function is solved by Gauss-Newton iteration algorithm. Precision, processing time and noise immunity were examined by computer simulations. These results shows the proposed system has satisfactory ability to be applied to practical measurement.

  • A Parallel Algorithm for the Stack Breadth-First Search

    Takaaki NAKASHIMA  Akihiro FUJIWARA  

     
    LETTER-Computational Complexity Theory

      Vol:
    E85-D No:12
      Page(s):
    1955-1958

    Parallelization of the P-complete problem is known to be difficult. In this paper, we consider the parallelizability of a stack breadth-first search (stack BFS) problem, which is proved to be P-complete. We first propose the longest path length (LPL) as a measure for the P-completeness of the stack BFS. Next, using this measure, we propose an efficient parallel algorithm for the stack BFS. Assuming the size and LPL of an input graph are n and l, respectively, the complexity of the algorithm indicates that the stack BFS is in the class NCk+1 if l = O(logk n), where k is a positive integer. In addition, the algorithm is cost optimal if l=O(nε), where 0 < ε < 1.

  • Fabrication of a Ferromagnetic-Coated Fiber Probe with a Double-Layer Structure

    Jungshik LIM  Tadashi KAWAZOE  Takashi YATSUI  Motoichi OHTSU  

     
    PAPER

      Vol:
    E85-C No:12
      Page(s):
    2077-2080

    We fabricated the first Fe-coated fiber probe for magneto-optical applications. In order to improve the optical confinement capability, we used a double-layer structure, with a thin coating of Au. The double-layer structure consisted of 50-nm-thick Fe and 50-nm-thick Au. A probe-to-probe experiment confirmed that the fabricated fiber probe had an effective optical confinement capability for optical near-field measurement.

  • Small Protrusion Used as a Probe for Apertureless Scanning Near-Field Optical Microscopy

    Noritaka YAMAMOTO  Takashi HIRAGA  

     
    LETTER

      Vol:
    E85-C No:12
      Page(s):
    2104-2108

    We demonstrated apertureless scanning near-field optical microscopy using a small protrusion (a simple 500-nm-diameter polystyrene particle) on a flat glass substrate as a probe. We designed a small sample stage to operate with the particle probe. It is a 40-µm-diameter circular stage, fabricated from an optical fiber by Hydrofluoric acid (HF) etching. In this paper, we present the first atomic force microscope and scanning near-field optical microscope images obtained with such a probe. We also discuss schemes for probe-sample distance control in this novel form of apertureless scanning near-field optical microscopy.

  • Numerical Analysis of Nonlinear Distortion Generated from a Single Varactor and an Anti-Series Varactor Pair

    Masami AKAIKE  Takashi OHIRA  Keizo INAGAKI  Qing HAN  

     
    PAPER

      Vol:
    E85-C No:12
      Page(s):
    1990-1999

    Higher-order harmonics and distortions generated by nonlinearity of capacitance-voltage characteristic of a single varactor and an anti-series-connected varactor pair are analyzed and compared. The effect of linear and parabolic terms of nonlinearity to harmonics outputs and distortions is discussed. It is shown that an anti-series-connected varactor pair has a completely suppressed linear term and reduced parabolic term. The advantage of an anti-series-connected varactor pair is theoretically explained.

  • Fidelity of Near-Field Intensity Distribution of Surface Plasmon on Slightly Rough Surfaces

    Tetsuya KAWANISHI  

     
    PAPER

      Vol:
    E85-C No:12
      Page(s):
    2065-2070

    Near-fields of electromagnetic waves scattered by slightly rough metal surfaces which support the surface plasmon mode at optical frequencies were studied theoretically by using the stochastic functional approach. Fidelity of near-field intensity images, defined by the correlation coefficient between the surface profile and the intensity of the scattered wave field, was investigated in order to discuss field distributions of the surface plasmon on complicated structures. We show that the fidelity strongly depends on the incident wavenumber and polarization when the incident wave corresponds to the surface plasmon mode.

  • High Resolution Optical Near-Field Spectroscopy Using Intrinsic Frequency Noise of Diode Laser

    Yasuo OHDAIRA  Hirokazu HORI  

     
    PAPER

      Vol:
    E85-C No:12
      Page(s):
    2097-2103

    Frequency modulation (FM) noise spectroscopy with diode laser is applied to high-resolution Doppler-free spectroscopy of Cs atomic vapor near a dielectric surface with evanescent-wave pump-probe configuration. Both high resolution and high sensitivity are realized by using an extremely simple experimental setup, in which no sweep or precise tuning of laser frequency are required. Several experimental configurations of optical near-field spectroscopy are demonstrated, which is useful for an extensive study of resonant interactions of atoms and microscopic electronic systems in optical near-fields.

  • Lateral Integration of Zn and Al Dots with Nanometer-Scale Precision by Near Field Optical Chemical Vapor Deposition Using a Sharpened Optical Fiber Probe

    Yoh YAMAMOTO  Motonobu KOUROGI  Motoichi OHTSU  Geun Hyoung LEE  Tadashi KAWAZOE  

     
    PAPER

      Vol:
    E85-C No:12
      Page(s):
    2081-2085

    In-situ position-controlled lateral deposition of nanometer-size Zn and Al dots on a sapphire substrate was accomplished by dissociating diethylzinc and trimethylaluminum using an optical near field on a sharpened optical fiber probe tip. The minimum diameters of the Zn and Al dots deposited were 37 and 25 nm, respectively, comparable with the apex diameter of the fiber probe. By changing the reactant molecules during deposition, nanometric Zn and Al dots were successively deposited on the same sapphire substrate with high precision. The distance between these dots was as short as 100 nm.

  • 3D Simulations of Optical Near-Field Distributions of Planar Objects by Volume Integral Equation

    Mengyun YAN  Kazuo TANAKA  Masahiro TANAKA  

     
    PAPER

      Vol:
    E85-C No:12
      Page(s):
    2047-2054

    Optical near-field distributions of planar dielectric and metallic objects placed on a large dielectric substrate plate have been calculated by the volume integral equation using an iterative method called generalized minimal residual method with the fast Fourier transform technique. The basic characteristics of the near-field have been investigated in detail for large and small objects, dielectric and metallic objects and incident p-polarized and s-polarized evanescent fields.

  • An Efficient Algorithm Finding Simple Disjoint Decompositions Using BDDs

    Yusuke MATSUNAGA  

     
    PAPER-Logic Synthesis

      Vol:
    E85-A No:12
      Page(s):
    2715-2724

    Functional decomposition is an essential technique of logic synthesis and is important especially for FPGA design. Bertacco and Damiani proposed an efficient algorithm finding simple disjoint decomposition using Binary Decision Diagrams (BDDs). However, their algorithm is not complete and does not find all the decompositions. This paper presents a complete theory of simple disjoint decomposition and describes an efficient algorithm using BDDs.

  • Experimental Verification of the Theory on Energy Modulation of an Electron Beam with an Optical Near-Field

    Ryo ISHIKAWA  Jongsuck BAE  Koji MIZUNO  

     
    PAPER

      Vol:
    E85-C No:12
      Page(s):
    2086-2092

    An exchange of energy between nonrelativistic electrons and evanescent waves in an optical near-filed has been investigated in an infrared region. A metal microslit has been adopted as an optical near-field generator which produces a number of evanescent waves by illumination of a laser beam. The theory has predicted that electrons interact selectively with the evanescent wave whose phase velocity is equal to the velocity of the electrons. In order to verify the theory, two types of precise microslits with different shapes, a slot and a V-shaped groove, have been fabricated. Experiments performed using these slits at the wavelength of 10.6 µm have shown that the energy change of the electrons has varied from 2 eV to 13 eV with their initial energy between 25-95 keV for a 3.2 kW CO2 laser pulse. The measured results have given experimental verifications to the theory.

  • Heuristic and Exact Algorithms for QoS Routing with Multiple Constraints

    Gang FENG  Kia MAKKI  Niki PISSINOU  Christos DOULIGERIS  

     
    PAPER-Network

      Vol:
    E85-B No:12
      Page(s):
    2838-2850

    The modern network service of finding the optimal path subject to multiple constraints on performance metrics such as delay, jitter, loss probability, etc. gives rise to the multi-constrained optimal-path (MCOP) QoS routing problem, which is NP-complete. In this paper, this problem is solved through both exact and heuristic algorithms. We propose an exact algorithm E_MCOP, which first constructs an aggregate weight and then uses a K-shortest-path algorithm to find the optimal solution. By means of E_MCOP, the performance of the heuristic algorithm H_MCOP proposed by Korkmaz et al. in a recent work is evaluated. H_MCOP only runs Dijkstra's algorithm (with slight modifications) twice, but it can find feasible paths with a success ratio very close to that of the exact algorithm. However, we notice that in certain cases its feasible solution has an unsatisfactorily high average cost deviation from the corresponding optimal solution. For this reason, we propose some modified algorithms based on H_MCOP that can significantly improve the performance by running Dijkstra's algorithm a few more times. The performance of the exact algorithm and heuristics is investigated through computer simulations on networks of various sizes.

  • Data Transfer Time by HTTP 1.0/1.1 on Asymmetric Networks Composed of Satellite and Terrestrial Links

    Hiroyasu OBATA  Kenji ISHIDA  Junichi FUNASAKA  Kitsutaro AMANO  

     
    PAPER-Internet

      Vol:
    E85-B No:12
      Page(s):
    2895-2903

    Asymmetric networks, which provide asymmetric bandwidth or delay for upstream and downstream transfer, have recently gained much attention since they support popular applications such as the World Wide Web (WWW). HTTP (Hypertext Transfer Protocol) is the basis of most WWW services so, evaluating the performance of HTTP on asymmetric networks is increasingly important, particularly real-world networks. However, the performance of HTTP on the asymmetric networks composed of satellite and terrestrial links has not sufficiently evaluated. This paper proposes new formulas to evaluate the performance of both HTTP1.0 and HTTP1.1 on asymmetric networks. Using these formulas, we calculate the time taken to transfer web data by HTTP1.0/1.1. The calculation results are compared to the results of an existing theoretical formula and experimental results gained from a system that combines a VSAT (Very Small Aperture Terminal) satellite communication system for satellite links (downstream) and the Internet for terrestrial links (upstream). The comparison shows that the proposed formulas yield more accurate results (compared to the measured values) than the existing formula. Furthermore, this paper proposes an evaluation formula for pipelined HTTP1.1, and shows that the values output by the proposed formula agree with those obtained by experiments (on the VSAT system) and simulations.

  • Optical Switching Phenomena of Kerr Nonlinear Microsphere Due to Near-Field Coupling: Numerical Analysis

    Masanobu HARAGUCHI  Toshihiro OKAMOTO  Masuo FUKUI  

     
    PAPER

      Vol:
    E85-C No:12
      Page(s):
    2059-2064

    We calculated linear and nonlinear responses of a Kerr nonlinear microsphere sandwiched by two prisms using the excitation of whispering gallery modes due to near-field coupling. As numerical calculations, the finite-difference time-domain method that takes into account the Kerr nonlinear effect was used. We dealt with two types of spheres, i.e., the Kerr-material sphere and the dielectric sphere coated by the Kerr material. It was found that the optical switching phenomena are induced in such spheres. The switching results from the fact that the variations of the refractive index of the nonlinear spheres affect the excitation condition of the whispering gallery modes.

  • A Computation Reduced MMSE Adaptive Array Antenna Using Space-Temporal Simultaneous Processing Equalizer

    Yoshihiro ICHIKAWA  Koji TOMITSUKA  Shigeki OBOTE  Kenichi KAGOSHIMA  

     
    PAPER

      Vol:
    E85-B No:12
      Page(s):
    2622-2629

    When we use an adaptive array antenna (AAA) with the minimum mean square error (MMSE) criterion under the multipath environment, where the receiving signal level varies, it is difficult for the AAA to converge because of the distortion of the desired wave. Then, we need the equalization both in space and time domains. A tapped-delay-line adaptive array antenna (TDL-AAA) and the AAA with linear equalizer (AAA-LE) have been proposed as simple space-temporal equalization. The AAA-LE has not utilized the recursive least square (RLS) algorithm. In this paper, we propose a space-temporal simultaneous processing equalizer (ST-SPE) that is an AAA-LE with the RLS algorithm. We proposed that the first tap weight of the LE should be fixed and the necessity of that is derived from a normal equation in the MMSE criterion. We achieved the space-temporal simultaneous equalization with the RLS algorithm by this configuration. The ST-SPE can reduce the computational complexity of the space-temporal joint equalization in comparison to the TDL-AAA, when the ST-SPE has almost the same performance as the TDL-AAA in multipath environment with minimum phase condition such as appeared at line-of-sight (LOS).

  • Experimental Evaluation of High Rate Data Transmission Using Turbo/Convolutional Coding in W-CDMA Mobile Communications

    Kenichi HIGUCHI  Takehiro IKEDA  Satoru FUKUMOTO  Mamoru SAWAHASHI  Fumiyuki ADACHI  

     
    PAPER

      Vol:
    E85-B No:12
      Page(s):
    2750-2759

    This paper evaluates the bit error rate (BER) performance of high rate data transmission such as at 64 and 384 kbits/s (kbps) with high quality (average BER is below 10-6) using turbo/convolutional coding associated with Rake time diversity, antenna diversity, and fast transmission power control (TPC) in multipath fading channels for W-CDMA mobile communications. Laboratory experiments using multipath fading simulators elucidate the superiority of turbo coding over convolutional coding when the channel interleaving length is 40 msec. The required average transmission power for the average BER of 10-6 using turbo coding is decreased by approximately 1.1-1.5 dB and 1.5-1.6 dB for 64 and 384 kbps data transmissions, respectively, compared to that using convolutional coding for a two-path Rayleigh fading channel with the fading maximum Doppler frequency of fD = 5-200 Hz. Furthermore, field experimental results elucidate that the required transmission power for the average BER of 10-6 employing turbo coding is decreased by approximately 0.6 dB and 2.0 dB compared to convolutional coding for 64 and 384 kbps data transmissions, respectively, without antenna diversity reception, while that with antenna diversity reception exhibits only an approximate 0.3-0.5 dB decrease. This decrease in improvement with antenna diversity reception indicates that in an actual fading channel in the field experiments, the impact of the error in path search for Rake combining and SIR measurement for fast TPC diminishes the performance improvement of the turbo coding due to a very low received signal power.

  • Multiscale Modeling with Stable Distribution Marginals for Long-Range Dependent Network Traffic

    Chien Trinh NGUYEN  Tetsuya MIKI  

     
    PAPER-Network

      Vol:
    E85-B No:12
      Page(s):
    2828-2837

    As demonstrated by many studies, measured wide-area network traffic exhibits fractal properties, such as self-similarity, burstiness, and long-range dependence (LRD). In order to describe long-range dependent network traffic and to emphasize the performance aspects of descriptive traffic models with additive and multiplicative structures, the multifractal wavelet model (MWM), which is based on the binomial cascade, has been shown to match the behavior of network traffic over small and large time scales. In this paper, using appropriate mathematical and statistical analyses, we develop the MWM proposed in [14], which provides a complete description of long-range dependent network traffic. First, we present accurate parameters of the MWM over different time scales. Next, a marginal stable distribution of MWM network traffic data is analyzed. The accuracy of the proposed MWM compared to actual data measurements is confirmed by queuing behavior performance through computer simulations.

  • Three-Step Cell Search Algorithm Employing Synchronization and Common Pilot Channels for OFCDM Broadband Wireless Access

    Yukiko ISHII  Kenichi HIGUCHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E85-B No:12
      Page(s):
    2672-2683

    This paper proposes a three-step cell search algorithm utilizing a synchronization channel (SCH) and common pilot channel (CPICH) in the forward link for OFCDM (Orthogonal Frequency and Code Division Multiplexing) broadband packet wireless access, and evaluates the cell search time performance by computer simulation. In the proposed three-step cell search algorithm, the OFCDM symbol timing, i.e., Fast Fourier Transform (FFT) window timing is estimated employing SCH or guard interval (GI) correlation in the first step. Then, the frame timing is detected by employing the SCH and the cell-specific scrambling code (CSSC) is identified by the CPICH in the second and third steps, respectively. Computer simulation results elucidate that the proposed three-step cell search algorithm achieves fast cell search time performance, i.e., cell detection probability of 90% within approximately 50 msec, assuming the number of CSSCs of 512 in a 19 hexagonal-cell model. We also clarify that there is no prominent difference in cell search time performance between the two employed SCH structures, time-multiplexed and frequency-multiplexed, assuming that the total transmit power of the SCH is the same. Based on the comparison of four substantial cell search algorithms, the GI-plus-SCH correlation method, in which FFT windowing timing detection, frame timing detection, and CSSC identification are performed by GI correlation, frequency-multiplexed SCH, and CPICH, respectively, exhibits the cell search time of approximately 44 msec at the detection probability of 90% with an optimized averaging parameter in each step.

  • Multiple Delay Bounds Control Algorithm via Class-Level Service Curves

    Daein JEONG  H. Jonathan CHAO  Hwasung KIM  

     
    PAPER-Network

      Vol:
    E85-B No:12
      Page(s):
    2868-2879

    In this paper, we propose a packet-scheduling algorithm, called the Class-level Service Lagging (CSL) algorithm, that guarantees multiple delay bounds for multi-class traffic in packet networks. We derive the associated schedulability test conditions, which are used to determine call admission. We first introduce a novel implementation of priority control, which has a conventional and simple form. We show how the efforts to confirm the logical validity of that implementation are managed to reach the definition of the CSL algorithm. The priority control is realized by imposing class-level unfairness in service provisioning, while the underlying service mechanism is carried out using the notion of fair queueing. The adoption of fair queueing allows the capability to maintain the service quality of the well-behaving traffic even in the presence of misbehaving traffic. We call this the firewall property. Simulation results demonstrate the superiority of the CSL algorithm in both priority control and firewall functionality. We also describe how the CSL algorithm is implementable with a computational complexity of O(1). Those features as well as the enhanced scalability, which results from the class-level approach, confirm the adequacy of the CSL algorithm for the fast packet networks.

  • A High Performance Fault-Tolerant Dual-LAN with the Dual-Path Ethernet Module

    Jihoon PARK  Jongkyu PARK  Ilseok HAN  Hagbae KIM  

     
    PAPER-Network

      Vol:
    E85-B No:12
      Page(s):
    2880-2886

    The network duplicating can achieve significant improvements of the Local Area Network (LAN)'s performance, availability, and security. For LAN duplicating, a Dual-Path Ethernet Module (DPEM) is developed. Since a DPEM is simply located at the front end of any network device as a transparent add-on type independent hardware machine, it does not require sophisticated server reconfiguration. We examine the desirable properties and the characteristics on the Dual-LAN structure. Our evaluation results show that the developed scheme is more efficient than the conventional Single-LAN structures in various aspects.

14461-14480hit(20498hit)