The search functionality is under construction.

Keyword Search Result

[Keyword] BPF(24hit)

1-20hit(24hit)

  • A 28 GHz Band Compact LTCC Filtering Antenna with Extracted-Pole Unit for Dual Polarization Open Access

    Kaoru SUDO  Ryo MIKASE  Yoshinori TAGUCHI  Koichi TAKIZAWA  Yosuke SATO  Kazushige SATO  Hisao HAYAFUJI  Masataka OHIRA  

     
    INVITED PAPER

      Pubricized:
    2023/05/18
      Vol:
    E106-C No:11
      Page(s):
    635-642

    This paper proposes a dual-polarized filtering antenna with extracted-pole unit (EPU) using LTCC substrate. The EPU realizes the high skirt characteristic of the bandpass filter with transmission zeros (TZs) located near the passband without cross coupling. The filtering antenna with EPU is designed and fabricated in 28GHz band for 5G Band-n257 (26.5-29.5GHz). The measured S11 is less than -10.6dB in Band-n257, and the isolation between two ports for dual polarization is greater than 20.0dB. The measured peak antenna gain is 4.0dBi at 28.8GHz and the gain is larger than 2.5dBi in Band-n257. The frequency characteristics of the measured antenna gain shows the high skirt characteristic out of band, which are in good agreement with electromagnetic (EM)-simulated results.

  • A New SIDGS-Based Tunable BPF Design Method with Controllable Bandwidth

    Weiyu ZHOU  Koji WADA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2023/03/28
      Vol:
    E106-C No:10
      Page(s):
    614-622

    This paper provides a new method to implement substrate integrated defected ground structure (SIDGS)-based bandpass filter (BPF) with adjustable frequency and controllable bandwidth. Compared with previous literature, this method implements a new SIDGS-like resonator capable of tunable frequency in the same plane as the slotted line using a varactor diode, increasing the design flexibility. In addition, the method solves the problem that the tunable BPF constituted by the SIDGS resonator cannot control the bandwidth by introducing a T-shaped non-resonant unit. The theoretical design method and the structural design are shown. Moreover, the configured structure is fabricated and measured to show the validity of the design method in this paper.

  • Design of a Dual-Wideband BPF with Parallel-Coupled Stepped Impedance Resonator and Open-Circuited Stubs

    Chun-Ping CHEN  Zhewang MA  Tetsuo ANADA  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2022/06/15
      Vol:
    E105-C No:12
      Page(s):
    761-766

    This brief paper proposes a dual-wideband filter consisting of a parallel-coupled stepped-impedance-resonator (SIR) and open-circuited stubs. Firstly, a notched UWB (ultra-wideband) bandpass filter (BPF) with steep skirt characteristics is theoretically designed. Then a bandstop filter(BSF) is implemented using an SIR and open stubs. By replacing the transmission line part of UWB filter with the BSF, a novel dual-wideband filter (DWBPF) is realized. As a design example, a DWBPF with two passbands, i.e. 3.4-4.8GHz and 7.25-10.25GHz, is designed to validate the design procedure. The designed filter exhibits steep skirt characteristics.

  • Design of a Compact Triple-Mode Dielectric Resonator BPF with Wide Spurious-Free Performance Open Access

    Fan LIU  Zhewang MA  Weihao ZHANG  Masataka OHIRA  Dongchun QIAO  Guosheng PU  Masaru ICHIKAWA  

     
    PAPER

      Pubricized:
    2022/03/30
      Vol:
    E105-C No:11
      Page(s):
    660-666

    A novel compact 5-pole bandpass filter (BPF) using two different types of resonators, one is coaxial TEM-mode resonator and the other dielectric triple-mode resonator, is proposed in this paper. The coaxial resonator is a simple single-mode resonator, while the triple-mode dielectric resonator (DR) includes one TM01δ mode and two degenerate HE11 modes. An excellent spurious performance of the BPF is obtained due to the different resonant behaviors of these two types of resonators used in the BPF. The coupling scheme of the 5-pole BPF includes two cascade triplets (CTs) which produce two transmission zeros (TZs) and a sharp skirt of the passband. Behaviors of the resonances, the inter-resonance couplings, as well as their tuning methods are investigated in detail. A procedure of mapping the coupling matrix of the BPF to its physical dimensions is developed, and an optimization of these physical dimensions is implemented to achieve best performance of the filter. The designed BPF is operated at 1.84GHz with a bandwidth of 51MHz. The stopband rejection is better than 20dB up to 9.7GHz (about 5.39×f0) except 7.85GHz. Good agreement between the designed and theoretically synthesized responses of the BPF is reached, verifying well the proposed configuration of the BPF and its design method.

  • A Multi-Layer SIW Resonator Loaded with Asymmetric E-Shaped Slot-Lines for a Miniaturized Tri-Band BPF with Low Radiation Loss

    Weiyu ZHOU  Satoshi ONO  Koji WADA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2021/12/27
      Vol:
    E105-C No:7
      Page(s):
    349-357

    This paper proposes a novel multi-layer substrate integrated waveguide (SIW) resonator loaded with asymmetric E-shaped slot-lines and shows a tri-band band-pass filter (BPF) using the proposed structure. In the previous literature, various SIW resonators have been proposed to simultaneously solve the problems of large area and high insertion loss. Although these SIWs have a lower insertion loss than planar-type resonators using a printed circuit board, the size of these structures tends to be larger. A multi-layer SIW resonator loaded with asymmetric E-shaped slot-lines can solve the above problems and realize a tri-band BPF without increasing the size to realize further miniaturization. The theoretical design method and the structural design are shown. Moreover, the configured structure is fabricated and measured for showing the validity of the design method in this paper.

  • Realization of Rectangular Frequency Characteristics by the Effects of a Low-Noise Amplifier and Flat Passband Bandpass Filter

    Tomohiro TSUKUSHI  Satoshi ONO  Koji WADA  

     
    PAPER

      Pubricized:
    2021/04/09
      Vol:
    E104-C No:10
      Page(s):
    568-575

    Realizing frequency rectangular characteristics using a planar circuit made of a normal conductor material such as a printed circuit board (PCB) is difficult. The reason is that the corners of the frequency response are rounded by the effect of the low unloaded quality factors of the resonators. Rectangular frequency characteristics are generally realized by a low-noise amplifier (LNA) with flat gain characteristics and a high-order bandpass filter (BPF) with resonators having high unloaded quality factors. Here, we use an LNA and a fourth-order flat passband BPF made of a PCB to realize the desired characteristics. We first calculate the signal and noise powers to confirm any effects from insertion loss caused by the BPF. Next, we explain the design and fabrication of an LNA, since no proper LNAs have been developed for this research. Finally, the rectangular frequency characteristics are shown by a circuit combining the fabricated LNA and the fabricated flat passband BPF. We show that rectangular frequency characteristics can be realized using a flat passband BPF technique.

  • Design of A Wideband Filter With Attenuation Poles Using A Novel Parallel-Coupled Three-line Unit Based on Cross-Coupling

    Chun-Ping CHEN  Junya ODA  Tetsuo ANADA  

     
    PAPER

      Vol:
    E97-C No:7
      Page(s):
    689-696

    To implement a wideband bandpass filter with improved skirt-selectivity and out-band characteristics, a new parallel-coupled three-line unit with two short-circuited stubs symmetrically-loaded at the center line is proposed. Unlike most traditional ones, the passband of the proposed parallel-coupled three-line structure is based on the cross-coupling between non-adjacent lines rather than the direct-coupling between adjacent ones, whereas a pair of attenuation poles is found in the stopbands. After revealing its work mechanism, an efficient filter-design-scheme is correspondingly proposed for the presented structure. Firstly, based on a chebyshev-filter synthesis theory, a wideband passband filter consisting of a parallel-coupled two-line and two short-circuited stubs loaded at the input- and output- ports is designed. Furthermore, by putting a properly-designed 3/4-wavelength stepped-impedance resonator (SIR) in between the parallel-coupled two lines, two attenuation poles are then realized at the frequencies very close to the cutoff ones. Accordingly, the roll-off characteristics of the filter are significantly-improved to greater than 100,dB/GHz. Furthermore, two-section open-ended stubs are used to replace the short-circuited ones to realize a pair of extra attenuation poles in stopbands. To validate the proposed techniques, a wideband filter with a bandwidth of 3--5,GHz (Fractional bandwidth (FBW) $= (5,GHz-3,GHz)/4,GHz =50%)$ was designed, simulated, fabricated and measured. The measured responses of the filter agree well with the simulation and theoretical ones, which validates the effectiveness of the newly-proposed three-line unit and the corresponding design scheme.

  • Performance of Data Transmission in Wireless Power Transfer with Coil Displacements

    Motoki IIDA  Kazuki SUGENO  Mamiko INAMORI  Yukitoshi SANADA  

     
    LETTER-Communication Theory and Signals

      Vol:
    E97-A No:4
      Page(s):
    1016-1020

    This letter investigates the relationship between antenna position and data communication performance in a magnetic resonance wireless power transfer (MRWPT) system. In MRWPT information such as the types of equipments, the required amount of electrical power, or the timing of power transfer should be exchanged. It is assumed here that power transfer coils in the MRWPT system are employed as antennas for data communication. The frequency characteristics of the antennas change due to coil displacements. The power transfer coils are modeled as a band pass filter (BPF) and the frequency characteristics of the filter are presented in this letter. The characteristics of the filter are derived through circuit simulation and resulting data communication performance is evaluated. Numerical results obtained through computer simulation show that the bit error late (BER) performance can be improved by controlling the center frequency of the communication link.

  • Synthesis of Optimum UWB Filters Composed of One-Wavelength Parallel-Coupled SIRs and Shunt Short-Circuited Stubs

    Chun-Ping CHEN  Junya ODA  Tetsuo ANADA  

     
    PAPER

      Vol:
    E96-C No:10
      Page(s):
    1281-1288

    In terms of the transmission-line theory, a general synthesis of a new class of optimum Chebyshev-type ultra-wideband bandpass (UWB) filter prototype composed of multistage stepped-impedance resonators (SIRs) and two short-circuited shunt stubs positioned at input- and output- ports is presented. By the comparison of the real and theoretical transfer functions, the design/characteristic equations are obtained for the design of the proposed filter prototype rather than the traditional design tables. The explicit expressions of one-stage and two-stage filters are then derived and reported. Accordingly, bandpass filters with an arbitrary FBW (Fractional Bandwidth) and passband ripple can be easily designed by solving the design equations. As an example, a 10-degree Chebyshev distributed filter (two-stage filter) with an FBW of 110% is synthesized to meet FCC's outdoor mask. The synthesized circuit model are confirmed by a commercial circuit simulator and then optimized by an EM simulator, fabricated in microstrip line and characterized by the network analyzer. The good agreements between the measured and predicted frequency responses validate the effectiveness of newly proposed filter prototype and the corresponding synthesis technique. In addition, the designed filter exhibits good characteristics of comparatively low insertion loss, quite sharp skirt, very flat group delay and good stopband (especially in lower one) as well. It should be also highlighted that, compared with the conventional filters composed merely of parallel-coupled SIRs or shunt short-circuit-stubs, the new prototype can reduce the overall length of the filter by more than 3/4λg. Moreover, in terms of the presented design technique, the proposed filter prototype can be also used to easily realize the UWB filters with an FBW even greater than 110%.

  • Effect of Load Fluctuation in Data Transmission for Wireless Power Transfer

    Kazuki SUGENO  Shinpei NOGUCHI  Mamiko INAMORI  Yukitoshi SANADA  

     
    LETTER-Digital Signal Processing

      Vol:
    E96-A No:5
      Page(s):
    991-994

    Recent interest in wireless power transfer research has been attracting a great deal of attention. To transfer power efficiently and safely in wireless power transfer system, information, such as frequency, required power and element values, need to be transmitted reliably. However, the bandwidth, which is used for exchanging information, is affected by the change of load at the receiver when it is charging. This paper investigates the effect of load fluctuation in data communication using orthogonal frequency division multiplexing (OFDM) modulation in resonant-type wireless power transfer systems. The equivalent circuit used in the transmitting and receiving antennas is a band pass filter (BPF) and its bandwidth is evaluated through circuit simulations. Numerical results obtained through computer simulation show that the bit error rate (BER) performance is affected by the load fluctuation and the efficiency of power transfer.

  • RF Front-End and Complex BPF for Reconfigurable Low-IF Receiver

    Hsiao-Chin CHEN  Shu-Wei CHANG  Bo-Rong TU  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E96-C No:2
      Page(s):
    251-261

    A LNA, an RF front-end and a 6th–order complex BPF for reconfigurable low-IF receivers are demonstrated in this work. Due to the noise cancellation, the two-stage LNA presents a low NF of 2.8 to 3.3 dB from 0.8 to 6 GHz. Moreover, the LNA delivers two kinds of gain curves with IIP3 of -2.6 dBm by employing the capacitive degeneration and the resistive gain-curve shaping in the second stage. The flicker noise corner frequency of the down-converter has been considered and the measured fC of the RF front-end is 200 kHz. The RF front-end also provides two kinds of gain curves. For the low-frequency mode, the conversion gain is 28.831.1 dB from 800 MHz to 2.4 GHz. For the high-frequency mode, the conversion gain is 26.827.4 dB from 3 to 5 GHz. The complex BPF is realized with gm-C LPFs by shifting the low-pass frequency response. With variable transconductances and capacitors, a fixed ratio of the centre frequency to the bandwidth (2) is achieved by varying the bandwidth and the centre frequency of the LPF simultaneously. The complex BPF has a variable bandwidth from 200 kHz to 6.4 MHz while achieving an image rejection of 44 dB.

  • Reliable Data Transmission for Resonant-Type Wireless Power Transfer

    Shinpei NOGUCHI  Mamiko INAMORI  Yukitoshi SANADA  

     
    PAPER-Digital Signal Processing

      Vol:
    E96-A No:1
      Page(s):
    298-303

    Wireless power transfer research has been receiving a great deal of attention in recent years. In resonant-type wireless power transfer, energy is transferred via LC resonant circuits. However, system performance is dependent on the circuit components. To transfer power efficiently and safely, information, such as frequency, required power and element values, need to be transmitted reliably in the system. This paper investigates data communication using orthogonal frequency division multiplexing (OFDM) modulation in resonant-type wireless power transfer systems. The equivalent circuit used in the transmitting and receiving antennas is a band pass filter (BPF) and its bandwidth is evaluated through circuit simulations and experimental measurements. Numerical results obtained through computer simulation show that the bit error rate (BER) performance is affected by the splitting resonant frequency.

  • Ultra-Wideband Bandpass Filter with Sharp Attenuation Slope Using Inter-Digital Finger Resonator and Parallel-Coupled Lines

    Takenori YASUZUMI  Yusuke OMOTE  Tomoki UWANO  Osamu HASHIMOTO  

     
    PAPER-Electronic Circuits

      Vol:
    E95-C No:2
      Page(s):
    268-274

    This paper presents an ultra-wideband (UWB) bandpass filter (BPF) with sharp attenuation slope characteristics. The circuit structure consists of an inter-digital finger resonator, parallel-coupled lines and phase matching line. The design of the bandwidth was described by using the even and odd mode characteristic impedances in the resonator structure. The parallel-coupled lines were also designed in the same manner. The parameters of the resonator and two parallel-coupled lines in combination as the BPF were then optimized by the simulation with HFSS. The designed BPF was experimentally fabricated and its measured performances showed the bandwidth from 3.6 to 10 GHz with the 20 dB outband rejection. For the U.S. UWB band design, the matching line was inserted between the two parallel-coupled lines. The matching at both band edges was then qualitatively analyzed on the smithchart. The HFSS simulation results of the structure realized the bandwidth from 3.1 to 10.6 GHz with sharp attenuation slope characteristics for SWR < 2.0. The measurement results agree well with the simulation results.

  • A 5th-Order SC Complex BPF Using Series Capacitances for Low-IF Narrowband Wireless Receivers

    Kenji SUZUKI  Mamoru UGAJIN  Mitsuru HARADA  

     
    PAPER-Electronic Circuits

      Vol:
    E94-C No:5
      Page(s):
    890-895

    A fifth-order switched-capacitor (SC) complex filter was implemented in 0.2-µm CMOS technology. A novel SC integrator was developed to reduce the die size and current consumption of the filter. The filter is centered at 24.730.15 kHz (3δ) and has a bandwidth of 20.260.3 kHz (3δ). The image channel is attenuated by more than 42.6 dB. The in-band third-order harmonic input intercept point (IIP3) is 17.3 dBm, and the input referred RMS noise is 34.3 µVrms. The complex filter consumes 350 µA with a 2.0-V power supply. The die size is 0.578 mm2. Owing to the new SC integrator, the filter achieves a 27% reduction in die size without any degradation in its characteristics, including its noise performance, compared with the conventional equivalent.

  • Wide Band Spurious Suppression of Multi-Strip Resonator BPF -- Comprehensive Way to Suppress Spurious Responses in BPFs -- Open Access

    Ikuo AWAI  

     
    INVITED PAPER

      Vol:
    E93-C No:7
      Page(s):
    942-948

    A new comprehensive method to suppress the spurious modes in a BPF is proposed taking the multi-strip resonator BPF as an example. It consists of disturbing the resonant frequency, coupling coefficient and external Q of the higher-order modes at the same time. The designed example has shown an extraordinarily good out-of-band response in the computer simulation.

  • The Dual-Band Bandpass Filters Using Doubly Parallel-Coupled SIRs with Multiple Zeros for WLAN Applications

    Min-Hua HO  Hao-Hung HO  Chen-Mao RAO  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E91-C No:6
      Page(s):
    949-955

    Two dual-band bandpass filters (BPFs) based on the doubly parallel-coupled stepped impedance resonators (SIRs) structures have been proposed in this paper. The coupled-SIRs with/without open-stub-loads are introduced in the filter design. The dual-band filters exhibiting multiple zeros design operate at 2.45/5.2-GHz for the WLAN applications. Two three-staged filters composed of four SIRs have been proposed with the tapped-line adapted in the I/O sections. A five-staged filter is constructed based on the same design principle to achieve a better band-rejection. The proposed filters have the advantages of a much wider bandwidth in both the passbands without sacrificing the passband's insertion loss and passband flatness. The design procedure for a conventional parallel-coupled microstrip lines model is still suitable to design the proposed filters. The proposed filters have achieved almost twice the bandwidth of a conventional parallel-coupled lines configuration under the same design parameters. The experiments have been conducted to verify filter performance. Measured results are in good agreement with the full-wave simulation results.

  • A Dual Mode BPF with Improved Spurious Response Using DGS Cells Embedded on the Ground Plane of CPW

    Min-Hang WENG  Chang-Sin YE  Cheng-Yuan HUNG  Chun-Yueh HUANG  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E91-C No:2
      Page(s):
    224-227

    A novel dual mode bandpass filter (BPF) with improved spurious response is presented in this letter. To obtain low insertion loss, the coupling structure using the dual mode resonator and the feeding scheme using coplanar-waveguide (CPW) are constructed on the two sides of a dielectric substrate. A defected ground structure (DGS) is designed on the ground plane of the CPW to achieve the goal of spurious suppression of the filter. The filter has been investigated numerically and experimentally. Measured results show a good agreement with the simulated analysis.

  • Spurious Suppression of a Parallel Coupled Microstrip Bandpass Filter with Simple Ring EBG Cells on the Middle Layer

    Hung-Wei WU  Min-Hang WENG  Yan-Kuin SU  Ru-Yuan YANG  Cheng-Yuan HUNG  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E89-C No:4
      Page(s):
    568-570

    This paper proposes a parallel coupled microstrip bandpass filter (BPF) with ring Electromagnetic Bandgap (EBG) cells on the middle layer for spurious suppression. The ring EBG cells of the middle layer add a good stopband-rejection mode to the second harmonics of the parallel coupled microstrip BPF with suppression of over -50 dB, without affecting the center frequency and insertion loss of the original designed BPF. The design of ring EBG cells is presented and verified by the experimented results.

  • Out-of-Band Improvement by Microstrip Line BPFs with Multiple Attenuation Poles in Stopband Using Various Conditions of Coupling Length of Partially Coupled-Line Section

    Kouji WADA  Ramesh K. POKHAREL  Takanobu OHNO  Osamu HASHIMOTO  

     
    PAPER-Resonators & Filters

      Vol:
    E88-C No:7
      Page(s):
    1430-1439

    In a partially coupled-line bandpass filter (BPF), a combination of two microstrip line resonators which are partially coupled, are considered, where one resonator is half-wavelength (λ/2)-long, and another whose one end is grounded, is only quarter-wavelength (λ/4)-long. Therefore, the length of a coupled-line section can be varied based on the position of the grounding end, and five conditions of the movable coupling length have been simulated which will greatly influence the spurious responses of a BPF. This property is numerically investigated in this paper. The analysis shows that, based on the grounding position, this method is capable of realizing the improved out-of-band characteristics by locating the multiple attenuation poles in the stopband and improved spurious responses up to five times of the center frequency (5f0). A few empirical models of BPF are fabricated, and the numerical results are ensured by comparing with the experimental results.

  • Microwave-Circuit-Embedded Resin Printed Circuit Board for Short Range Wireless Interfaces

    Akira SAITOU  Kazuhiko HONJO  Kenichi SATO  Toyoko KOYAMA  Koichi WATANABE  

     
    PAPER

      Vol:
    E88-C No:1
      Page(s):
    83-88

    Microwave circuits embedded in a multi-layer resin PCB are demonstrated using low loss resin materials. Resin materials for microwave frequencies were compared with conventional FR-4 with respect to dielectric and conductor loss factors, which proved that losses could be reduced drastically with the low loss material and design optimizations. Baluns, switches and BPFs were designed and fabricated to estimate microwave performances. Measured and simulated insertion losses of the circuits for 2.5 GHz band, were 0.3 dB for a switch, 0.4 dB for a balun and 2.0 dB for a 3-stage Chebyshev BPF. An integration of a switch, a BPF and two baluns was successfully implemented in a multi-layer PCB. Insertion losses of the fabricated integrated circuit were less than 3 dB with 0.1 dB additional loss compared with a sum of individual circuit losses. With estimated results of temperature characteristics and reliability as well as low loss performances, microwave circuits in resin PCBs can be considered as a viable candidate for microwave equipments.

1-20hit(24hit)