The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] FILT(1579hit)

841-860hit(1579hit)

  • Resonance Analysis of Multilayered Filters with Triadic Cantor-Type One-Dimensional Quasi-Fractal Structures

    Ushio SANGAWA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E88-C No:10
      Page(s):
    1981-1991

    Multilayered filters with a dielectric distribution along their thickness forming a one-dimensional quasi-fractal structure are theoretically analyzed, focusing on exposing their resonant properties in order to understand a dielectric Menger's sponge resonator [4],[5]. "Quasi-fractal" refers to the triadic Cantor set with finite generation. First, a novel calculation method that has the ability to deal with filters with fine fractal structures is derived. This method takes advantage of Clifford algebra based on the theory of thin-film optics. The method is then applied to classify resonant modes and, especially, to investigate quality factors for them in terms of the following design parameters: a dielectric constant, a loss tangent, and a stage number. The latter determines fractal structure. Finally, behavior of the filters with perfect fractal structure is considered. A crucial finding is that the high quality factor of the modes is not due to the complete self-similarity, but rather to the breaking of such a fractal symmetry.

  • A New Efficient Impulse Detection Algorithm for the Removal of Impulse Noise

    Wenbin LUO  

     
    PAPER

      Vol:
    E88-A No:10
      Page(s):
    2579-2586

    A new impulse noise detection algorithm is presented, which can successfully remove impulse noise from corrupted images while preserving image details. The impulse detection algorithm is combined with median filtering to achieve noise removal. The main advantage of the proposed algorithm is that it can detect the impulse noise with high accuracy while reducing the probability of detecting image details as impulses. Also, it can be applied iteratively to improve the quality of restored images. It is efficient and low in complexity. Furthermore, it requires no previous training. Extensive experimental results show that the proposed approach significantly outperforms many well-known techniques.

  • A Spatiotemporal Neuronal Filter for Channel Equalization and Video Restoration

    Elhassane IBNELHAJ  Driss ABOUTAJDINE  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E88-D No:10
      Page(s):
    2427-2431

    In this paper we present a 3D adaptive nonlinear filter, namely the 3D adaptive CPWLN, based on the Canonical Piece Wise-Linear Network with an LMS L-filter type of adaptation. This filter is used to equalize nonlinear channel effect and remove impulsive/or mixed impulsive and Additive White Gaussian noise from video sequences. First, motion compensation is performed by a robust estimator. Then, a 3-D CPWLN LMS L-filter is applied. The overall combination is able to adequately remove undesired effects of communication channel and noise. Computer simulations on real-world image sequences are included. The algorithm yields promising results in terms of both objective and subjective quality of the restored sequence.

  • Filtering of Block Motion Vectors for Use in Motion-Based Video Indexing and Retrieval

    Golam SORWAR  Manzur MURSHED  Laurence DOOLEY  

     
    PAPER

      Vol:
    E88-A No:10
      Page(s):
    2593-2599

    Though block-based motion estimation techniques are primarily designed for video coding applications, they are increasingly being used in other video analysis applications due to their simplicity and ease of implementation. The major drawback associated with these techniques is that noises, in the form of false motion vectors, cannot be avoided while capturing block motion vectors. Similar noises may further be introduced when the technique of global motion compensation is applied to obtain true object motion from video sequences where both the camera and object motions are present. This paper presents a new technique for capturing large number of true object motion vectors by eliminating the false motion vector fields, for use in the application of object motion based video indexing and retrieval applications. Experimental results prove that our proposed technique significantly increases the percentage of retained true object motion vectors while eliminating all false motion vectors for variety of standard and non-standard video sequences.

  • Optimum Wavelength Filter Spectrum Response in DWDM Systems for Ultimate Spectral Efficiency

    Shuichi SUZUKI  Yasuo KOKUBUN  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E88-B No:9
      Page(s):
    3649-3659

    A method of evaluating the wavelength filter spectrum response is introduced. The increase of the crosstalk level due to the filtering and the relation between the total crosstalk and the spectral efficiency are derived in detail using the Gaussian filter. Since this method can be applied to various kinds of filter spectrum responses, the ultimate spectral efficiencies of filters are compared. In this comparison, the problem of the box-like filter, which has been considered to be desirable, is revealed, and this is improved by cascading the filter spectrum. The requirement on the rejection floor that inheres in the filter is also made clear.

  • Side-Coupled Microstrip Open-Loop Resonator for Harmonic-Suppressed Bandpass Filters

    Hang WANG  Lei ZHU  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E88-C No:9
      Page(s):
    1893-1895

    A side-coupled microstrip open-loop resonator is presented for design of harmonic-suppressed bandpass filters with compact size. In geometry, the open-ended microstrip feed line is put in close proximity to the loop resonator at the opposite side of an opened-gap. In design, its length is properly lengthened to establish the orthogonal even- and odd-symmetrical current distributions along the two coupled strip conductors. It thus results in cancellation the 1st parasitic resonance. The two-stage open-loop filter is first constructed and its performance is studied under varied feed line lengths. Furthermore, a four-stage filter block is optimally designed at 2.52 GHz and its circuit sample is fabricated with the overall length less than 60% of one guided wavelength. The measured insertion loss at the 1st harmonic is higher than 30 dB, the stopband covers the range from 2.8 GHz to 7.0 GHz, and the dominant pass bandwidth is about 9.0%.

  • Minimum-Maximum Exclusive Weighted-Mean Filter with Adaptive Window

    Jinsung OH  Changhoon LEE  Younam KIM  

     
    LETTER-Digital Signal Processing

      Vol:
    E88-A No:9
      Page(s):
    2451-2454

    In this paper, we present a minimum-maximum exclusive weighted-mean filtering algorithm with adaptive window. Image pixels within the varying size of the window are ranked and classified as minimum-maximum and median levels, and then passed through the weighted-mean of median level and identity filters, respectively. The filtering window size is adaptively increasing according to noise ratio without noise measurement. Extensive simulations show that the proposed filter performs better than other median/rank-type filters in removing impulse noise of highly corrupted images.

  • A Stack of Metal Rings for Reducing Common-Mode Current on a Wire Passing through an Aperture

    Sungtek KAHNG  

     
    LETTER-Electromagnetic Compatibility(EMC)

      Vol:
    E88-B No:9
      Page(s):
    3819-3822

    Unwanted electromagnetic emission occurs due to the common-mode current on the cables entering a PC's metal enclosure and can be treated as wire antennas passing through the apertures of the enclosure. To reduce the emission, a stack of metal rings is suggested to be placed around the cable and external to the aperture, adopting the concept of a Coaxial Band-Stop Filter, for the first time. The influence of this novel structure on the common-mode current is examined in the FDTD-method frame work.

  • An Efficient Adaptive Feedback Cancellation for Hearing Aids

    Sang Min LEE  In Young KIM  Young Cheol PARK  

     
    LETTER-Speech and Hearing

      Vol:
    E88-A No:9
      Page(s):
    2446-2450

    Howling is very annoying problem to the hearing-aid users and it limits the maximum usable gain of hearing aids. We propose a new feedback cancellation system by inserting a time-varying decorrelation filter in the forward path. We use a second-order all-pass filter with control parameters whose time variation is implemented using a low-frequency modulator. A noticeable reduction of weight-vector misalignment is achievable using our proposed method.

  • Novel Dual-Mode Circular Patch Bandpass Filter with Enhanced Stopband Performance

    Min-Hung WENG  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E88-C No:9
      Page(s):
    1872-1879

    This investigation proposed a novel dual-mode circular patch bandpass filter (BPF) with enhanced stopband performance. The novelty of the proposed structure is to use a pair of square etched areas acting as a perturbation element on the circular patch resonator such that two split modes are coupled and the filter structure can be reduced. The coupling coefficients of two split modes are obtained. To improve the stopband performance, a pairs of H-shaped defected ground structure (DGS) cells are used below the input/output port to suppress the spurious response of the proposed BPF. The equivalent circuit of the DGS cell is discussed and the relations between bandstop characteristic and the suitable DGS dimensions are also investigated. The proposed BPF is demonstrated with a central frequency fo = 2.2 GHz, a 3-dB fractional bandwidth of 8% and a wider stopband of -35 dB from 2.5 to 6 GHz. Measured results of experimental filter have good agreement with the theoretical simulated results.

  • Convergence Properties of a CORDIC-Based Adaptive ARMA Lattice Filter

    Shin'ichi SHIRAISHI  Miki HASEYAMA  Hideo KITAJIMA  

     
    PAPER-Digital Signal Processing

      Vol:
    E88-A No:8
      Page(s):
    2154-2164

    This paper presents a theoretical convergence analysis of a CORDIC-based adaptive ARMA lattice filter. In previous literatures, several investigation methods for adaptive lattice filters have been proposed; however, they are available only for AR-type filters. Therefore, we have developed a distinct technique that can reveal the convergence properties of the CORDIC ARMA lattice filter. The derived technique provides a quantitative convergence analysis, which facilitates an efficient hardware design for the filter. Moreover, our analysis technique can be applied to popular multiplier-based filters by slight modifications. Hence, the presented convergence analysis is significant as a leading attempt to investigate ARMA lattice filters.

  • Design Method for 2-Channel Signal Word Decomposed Filters with Minimum Output Error and Their Effective VLSI Implementation

    Kouhei HOSOKAWA  Mitsuhiko YAGYU  Akinori NISHIHARA  

     
    PAPER-Digital Signal Processing

      Vol:
    E88-A No:8
      Page(s):
    2044-2054

    This paper proposes hardware-efficient VLSI architectures for 2-channel signal word decomposed filters (2-ch SWDFs) and their design method in consideration of the implemented circuit size. By consideration of the circuit size in design method, 2-ch SWDFs with a minimum output error among SWDFs whose size is equal to or smaller than a specification can be designed. Canonical Signed Digit expressions are used to effectively represent the filter coefficients of the SWDFs in order to make its circuit size small. Through precise analysis of the internal structures, circuit size can be accurately estimated. Some design examples show that the proposed method can design filters whose output error is about -12 dB lower than that of the linear FIR filters. Compared to an exhaustive search method, our method is much faster and can design filters whose output errors are only about 2 dB more.

  • Optimal Design of Complex Two-Channel IIR QMF Banks with Equiripple Response

    Ju-Hong LEE  Yuan-Hau YANG  

     
    PAPER-Digital Signal Processing

      Vol:
    E88-A No:8
      Page(s):
    2143-2153

    The optimal design of complex infinite impulse response (IIR) two-channel quadrature mirror filter (QMF) banks with equiripple frequency response is considered. The design problem is appropriately formulated to result in a simple optimization problem. Therefore, based on a variant of Karmarkar's algorithm, we can efficiently solve the optimization problem through a frequency sampling and iterative approximation method to find the complex coefficients for the IIR QMFs. The effectiveness of the proposed technique is to form an appropriate Chebyshev approximation of a desired response and then find its solution from a linear subspace in several iterations. Finally, simulation results are presented for illustration and comparison.

  • Adaptation Policies for Web Server Intrusion-Tolerant System

    Eul Gyu IM  Hoh Peter IN  Dae-Sik CHOI  Yong Ho SONG  

     
    LETTER-Internet

      Vol:
    E88-B No:8
      Page(s):
    3462-3465

    The emergence of intelligent and sophisticated attack techniques makes web services more vulnerable than ever which are becoming an important business tool in e-commerce. Many techniques have been proposed to remove the security vulnerabilities, yet have limitations. This paper proposes an adaptive mechanism for a web-server intrusion-tolerant system (WITS) to prevent unknown patterns of attacks by adapting known attack patterns. SYN flooding attacks and their adaptive defense mechanisms are simulated as a case study to evaluate the performance of the proposed adaptation mechanism.

  • A Compact Design of W-Band High-Pass Waveguide Filter Using Genetic Algorithms and Full-Wave Finite Element Analysis

    An-Shyi LIU  Ruey-Beei WU  Yi-Cheng LIN  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E88-C No:8
      Page(s):
    1764-1771

    This paper proposes an efficient two-phase optimization approach for a compact W-band double-plane stepped rectangular waveguide filter design, which combines genetic algorithms (GAs) with the simplified transmission-line model and full-wave analysis. Being more efficient and robust than the gradient-based method, the approach can lead to a compact waveguide filter design. Numerical results show that the resultant waveguide filter design with 4 sections (total length 19.6 mm) is sufficient to meet the design goal and provides comparable performance to that with 8 sections (total length 35.6 mm) by the Chebyshev synthesis approach. Based on the present approach, nineteen compact high-pass waveguide filters have been implemented and measured at the W-band with satisfactory performance.

  • Flat-Topped Spectral Response in a Ladder-Type Interferometric Filter

    Seok-Hwan JEONG  Shinji MATSUO  Yuzo YOSHIKUNI  Toru SEGAWA  Yoshitaka OHISO  Hiroyuki SUZUKI  

     
    PAPER-Optoelectronics

      Vol:
    E88-C No:8
      Page(s):
    1747-1754

    We propose and demonstrate a novel ladder interferometric filter that exhibits flat-topped spectral response for use in wavelength-division-multiplexing (WDM) based photonic networks. We numerically analyze the flattened spectral response in a ladder-type filter by modifying the transfer matrix of ladder interferometer. Conventional parabolic-shaped and flat-topped-designed ladder interferometric filters are fabricated, and characterized. We demonstrate a flat-topped filter response in the fabricated device. The shape factor, which is defined by the ratio of -1 dB bandwidth to -10 dB bandwidth, is improved from 0.32 to 0.54. The tunability and the increase in filter extinction ratio of the proposed device are also discussed.

  • Computationally Efficient Method of Signal Subspace Fitting for Direction-of-Arrival Estimation

    Lei HUANG  Dazheng FENG  Linrang ZHANG  Shunjun WU  

     
    PAPER-Antennas and Propagation

      Vol:
    E88-B No:8
      Page(s):
    3408-3415

    It is interesting to resolve coherent signals impinging upon a linear sensor array with low computational complexity in array signal processing. In this paper, a computationally efficient method of signal subspace fitting (SSF) for direction-of-arrival (DOA) estimation is developed, based on the multi-stage wiener filter (MSWF). To find the new signal subspace, the proposed method only needs to compute the matched filters in the forward recursion of the MSWF, does not involve the estimate of an array covariance matrix or any eigendecomposition, thus implying that the proposed method is computationally efficient. Numerical results show that the proposed method provides the comparable estimation accuracy with the classical weighted subspace fitting (WSF) method for uncorrelated signals at reasonably high SNR and reasonably large samples, and surpasses the latter for coherent signals in the case of low SNR and small samples. When SNR is low and the samples are small, the proposed method is less accurate than the classical WSF method for uncorrelated signals. This drawback is balanced by the computational advantage of the proposed method.

  • An Adaptive Noise Canceller with Low Signal-Distortion Based on Variable Stepsize Subfilters for Human-Robot Communication

    Miki SATO  Akihiko SUGIYAMA  Shin'ichi OHNAKA  

     
    PAPER-Digital Signal Processing

      Vol:
    E88-A No:8
      Page(s):
    2055-2061

    This paper proposes an adaptive noise canceller (ANC) with low signal-distortion for human-robot communication. The proposed ANC has two sets of adaptive filters for noise and crosstalk; namely, main filters (MFs) and subfilters (SFs) connected in parallel thereto. To reduce signal-distortion in the output, the stepsizes for coefficient adaptation in the MFs are controlled according to estimated signal-to-noise ratios (SNRs) of the input signals. This SNR estimation is carried out using SF output signals. The stepsizes in the SFs are determined based on the ratio of the primary and the reference input signals to cope with a wider range of SNRs. This ratio is used as a rough estimate of the input signal SNR at the primary input. Computer simulation results using TV sound and human voice recorded in a carpeted room show that the proposed ANC reduces both residual noise and signal-distortion by as much as 20 dB compared to the conventional ANC. Evaluation in speech recognition with this ANC reveals that with a realistic TV sound level, as good recognition rate as in the noise-free condition is achieved.

  • A 6.25 mm2 2.4 GHz CMOS 802.11b Transceiver

    Yong-Hsiang HSIEH  Wei-Yi HU  Wen-Kai LI  Shin-Ming LIN  Chao-Liang CHEN  David J. CHEN  Sao-Jie CHEN  

     
    PAPER

      Vol:
    E88-C No:8
      Page(s):
    1716-1722

    This CMOS transceiver IC exploits the superheterodyne architecture to implement a low-cost RF front-end with only 6.25 mm2 die area for IEEE 802.11b standard. The transceiver is implemented in 0.25 µm CMOS process with 2.7 V supply voltage, and achieves a -86 dBm 11 Mb/s receive sensitivity and a 2 dBm transmit output power.

  • Reduction of Microwave Oven Interference in DS-SS WLAN Systems by Using Adaptive Filters

    Yasushi MATSUMOTO  Masanobu NAKATSUKA  Takahide MURAKAMI  Katsumi FUJII  Akira SUGIURA  

     
    PAPER-Communications

      Vol:
    E88-B No:8
      Page(s):
    3221-3228

    Since WLAN (wireless LAN) systems share the 2.4-GHz frequency band with microwave ovens, interference caused by radiated oven noise is a serious problem in practical WLAN application. To mitigate the oven noise interference in DS-SS (direct-sequence spread spectrum) WLAN systems, the use of adaptive filters is proposed. This method is based on the fact that oven noise behaves like CW (continuous wave) interference within a short duration. In contrast to previous reduction techniques for oven noise, this method can be implemented without changing any specifications of current WLAN systems. The results of numerical and experimental analyses clearly demonstrate the effectiveness of adaptive filters for improving the bit error rates of WLAN links subject to oven noise interference.

841-860hit(1579hit)