The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] FILT(1579hit)

721-740hit(1579hit)

  • Mel-Wiener Filter for Mel-LPC Based Speech Recognition

    Md. Babul ISLAM  Kazumasa YAMAMOTO  Hiroshi MATSUMOTO  

     
    PAPER-Speech and Hearing

      Vol:
    E90-D No:6
      Page(s):
    935-942

    This paper proposes a Mel-Wiener filter to enhance Mel-LPC spectra in the presence of additive noise. The transfer function of the proposed filter is defined by using a first-order all-pass filter instead of unit delay. The filter coefficients are estimated based on minimization of the sum of the square error on the linear frequency scale without applying the bilinear transformation and efficiently implemented in the autocorrelation domain. The proposed filter does not require any time-frequency conversion, which saves a large amount of computational load. The performance of the proposed system is comparable to that of ETSI AFE. The optimum filter order is found to be 3, and thus filtering is computationally inexpensive. The computational cost of the proposed system except VAD is 53% of ETSI AFE.

  • Evaluation of Digitally Controlled PLL by Clock-Period Comparison

    Yukinobu MAKIHARA  Masayuki IKEBE  Eiichi SANO  

     
    LETTER

      Vol:
    E90-C No:6
      Page(s):
    1307-1310

    For a digitally controlled phase-locked loop (PLL), we evaluate the use of a clock-period comparator (CPC). In this PLL, only the frequency lock operation should be performed; however, the phase lock operation is also simultaneously achieved by performing the clock-period comparison when the phases of the reference signal and the output signal approach each other. Theoretically a lock-up operation was conducted. In addition, we succeeded in digitizing a voltage controlled oscillator (VCO) with a linear characteristic. We confirmed a phase lock operation with a slight loop characteristic through SPICE simulation.

  • Gauss-Newton Particle Filter

    Hui CAO  Noboru OHNISHI  Yoshinori TAKEUCHI  Tetsuya MATSUMOTO  Hiroaki KUDO  

     
    LETTER-Systems and Control

      Vol:
    E90-A No:6
      Page(s):
    1235-1239

    The extened Kalman filter (EKF) and unscented Kalman filter (UKF) have been successively applied in particle filter framework to generate proposal distributions, and shown significantly improving performance of the generic particle filter that uses transition prior, i.e., the system state transition prior distribution, as the proposal distribution. In this paper we propose to use the Gauss-Newton EKF/UKF to replace EKF/UKF for generating proposal distribution in a particle filter. The Gauss-Newton EKF/UKF that uses iterated measurement update can approximate the optimal proposal distribution more closer than EKF/UKF, especially in the case of significant nonlinearity in the measurement function. As a result, the Gauss-Newton EKF/UKF is able to generate and propagate the proposal distribution for each particle much better than EKF/UKF, thus further improving the performance of state estimation. Simulation results for a nonlinear/non-Gaussian time-series demonstrate the superior estimation accuracy of our method compared with state-of-the-art filters.

  • A Study to Realize a 1-V Operational Passive Σ-Δ Modulator by Using a 90 nm CMOS Process

    Toru CHOI  Tatsuya SAKAMOTO  Yasuhiro SUGIMOTO  

     
    LETTER

      Vol:
    E90-C No:6
      Page(s):
    1304-1306

    A 1-V operational sigma-delta modulator with a second-order passive switched capacitor filter is designed and fabricated by using a 90 nm CMOS process. No gate-voltage bootstrapped scheme is adopted to drive analog switches, and the voltage gain of a comparator is chosen to be 94 dB. The experimental results show that the peak SNR reached 68.9 dB with a frequency bandwidth of 40 kHz when the clock was 40 MHz.

  • A Modified Gaussian Filter for the Arbitrary Scale LP Enlargement Method

    Shuai YUAN  Akira TAGUCHI  Masahide ABE  Masayuki KAWAMATA  

     
    LETTER-Image

      Vol:
    E90-A No:5
      Page(s):
    1115-1120

    In this paper, we use a modified Gaussian filter to improve enlargement accuracy of the arbitrary scale LP enlargement method, which is based on the Laplacian pyramid representation (so called "LP method"). The parameters of the proposed algorithm are extracted through a theoretical analysis and an experimental estimation. Experimental results show that the proposed modified Gaussian filter is effective for the arbitrary scale LP enlargement method.

  • Web Page Filtering for Domain Ontology with the Context of Concept

    Bo-Yeong KANG  Hong-Gee KIM  

     
    LETTER-Artificial Intelligence and Cognitive Science

      Vol:
    E90-D No:5
      Page(s):
    859-862

    Despite the importance of domain-specific resource construction for domain ontology development, few studies have sought to develop a method for automatically identifying domain ontology-relevant web pages. To address this situation, here we propose a web page filtering scheme for domain ontology that identifies domain-relevant web pages from the web based on the context of concepts. Testing of the proposed filtering scheme with a business domain ontology on YahooPicks web pages yielded promising filtering results that were superior to those obtained using the baseline system.

  • Low-Complexity Conjugate Gradient Algorithm for Array Code Acquisition

    Hua-Lung YANG  Wen-Rong WU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:5
      Page(s):
    1193-1200

    An adaptive array code acquisition for direct-sequence/code-division multiple access (DS/CDMA) systems was recently proposed to enhance the performance of the conventional correlator-based method. The scheme consists of an adaptive spatial and an adaptive temporal filter, and can simultaneously perform beamforming and code-delay estimation. Unfortunately, the scheme uses a least-mean-square (LMS) adaptive algorithm, and its convergence is slow. Although the recursive-least-squares (RLS) algorithm can be applied, the computational complexity will greatly increase. In this paper, we solve the dilemma with a low-complexity conjugate gradient (LCG) algorithm, which can be considered as a special case of a modified conjugate gradient (MCG) algorithm. Unlike the original conjugate gradient (CG) algorithm developed for adaptive applications, the proposed method, exploiting the special structure inherent in the input correlation matrix, requires a low computational-complexity. It can be shown that the computational complexity of the proposed method is on the same order of the LMS algorithm. However, the convergence rate is improved significantly. Simulation results show that the performance of adaptive array code acquisition with the proposed CG algorithm is comparable to that with the original CG algorithm.

  • Nonlinear Estimation of Harmonic Signals

    Kiyoshi NISHIYAMA  

     
    PAPER-Digital Signal Processing

      Vol:
    E90-A No:5
      Page(s):
    1021-1027

    A nonlinear harmonic estimator (NHE) is proposed for extracting a harmonic signal and its fundamental frequency in the presence of white noise. This estimator is derived by applying an extended complex Kalman filter (ECKF) to a multiple sinusoidal model with state-representation and then efficiently specializing it for the case of harmonic estimation. The effectiveness of the NHE is verified using computer simulations.

  • A Subsystem of Electromagnetic Wave Radiation and Propagation Estimation Using HTS Receiving Filters for S Band

    Kazunori YAMANAKA  Masafumi SHIGAKI  Shin-ichi YAMAMOTO  Shin-ichi KOZONO  

     
    PAPER

      Vol:
    E90-C No:3
      Page(s):
    595-598

    We report on a subsystem of electromagnetic wave radiation and propagation estimation using high-Tc superconducting (HTS) receiving filters for S band. The subsystem, comprised of HTS filters, a rubidium standard signal generator (Rb SSG), a global positioning system (GPS) unit, etc., was used to evaluate the electromagnetic-wave (EMW) intensities, frequencies, the frequency interferences and the ground positions where the EM are measured. The developed subsystem showed high frequency selectivity for S band by using the HTS filters. Furthermore, we verified that the subsystem with the HTS filters operated on the moving car.

  • Efficient 3-D Sound Movement with Time-Varying IIR Filters

    Kosuke TSUJINO  Wataru KOBAYASHI  Takao ONOYE  Yukihiro NAKAMURA  

     
    PAPER-Speech/Audio Processing

      Vol:
    E90-A No:3
      Page(s):
    618-625

    3-D sound using head-related transfer functions (HRTFs) is applicable to embedded systems such as portable devices, since it can create spatial sound effect without multichannel transducers. Low-order modeling of HRTF with an IIR filter is effective for the reduction of the computational load required in embedded applications. Although modeling of HRTFs with IIR filters has been studied earnestly, little attention has been paid to sound movement with IIR filters, which is important for practical applications of 3-D sound. In this paper, a practical method for sound movement is proposed, which utilizes time-varying IIR filters and variable delay filters. The computational cost for sound movement is reduced by about 50% with the proposed method, compared to conventional low-order FIR implementation. In order to facilitate efficient implementation of 3-D sound movement, tradeoffs between the subjective quality of the output sound and implementation parameters such as the size of filter coefficient database and the update period of filter coefficients are also discussed.

  • Stochastic Pedestrian Tracking Based on 6-Stick Skeleton Model

    Ryusuke MIYAMOTO  Jumpei ASHIDA  Hiroshi TSUTSUI  Yukihiro NAKAMURA  

     
    PAPER-Image

      Vol:
    E90-A No:3
      Page(s):
    606-617

    A novel pedestrian tracking scheme based on a particle filter is proposed, which adopts a skeleton model of a pedestrian for a state space model and distance transformed images for likelihood computation. The 6-stick skeleton model used in the proposed approach is very distinctive in representing a pedestrian simply but effectively. By the experiment using the real sequences provided by PETS, it is shown that the target pedestrian is tracked adequately by the proposed approach with a simple silhouette extraction method which consists of only background subtraction, even if the tracking target moves so complicatedly and is often so cluttered by other obstacles that the pedestrian can not be tracked by the conventional methods. Moreover, it is demonstrated that the proposed scheme can track the multiple targets in the complex case that their trajectories intersect.

  • Equivalent Parallel Structure of Deinterlacer Banks and Its Application to Optimal Bit-Rate Allocation

    Minoru HIKI  Shogo MURAMATSU  Takuma ISHIDA  Hisakazu KIKUCHI  

     
    PAPER-Digital Signal Processing

      Vol:
    E90-A No:3
      Page(s):
    642-650

    In this paper, theoretical properties of deinterlacer banks are analyzed. Deinterlacer banks are novel filter banks in the sense that a progressive video sequence is separated into two progressive video sequences of a half frame rate and, furthermore, interlaced sequences are produced as intermediate data. Unlike the conventional filter banks, our deinterlacer banks are constructed in a way unique to multidimensional systems by using invertible deinterlacers, which the authors have proposed before. The system is a kind of shift-varying filter banks and it was impossible to derive the optimal bit-allocation control without any equivalent parallel filter banks. This paper derives an equivalent polyphase matrix representation of the whole system and its equivalent parallel structure, and then shows the optimal rate allocation for the deinterlacer banks. Some experimental results justify the effectiveness of the optimal rate allocation through our theoretical analysis.

  • On the Cross-Layer Impact of TCP ACK Thinning on IEEE 802.11 Wireless MAC Dynamics

    Hyogon KIM  Heejo LEE  Sangmin SHIN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:2
      Page(s):
    412-416

    ACK thinning refers to the technique to discard or reduce TCP acknowledgements (ACKs) for the purpose of diverting scarce bandwidth to TCP data traffic. It has been shown that under some circumstances the technique is effective to boost the TCP throughput on wireless links, in particular the IEEE 802.11 wireless LAN (WLAN). In this letter, however, we show that ACK thinning backfires under congestion due to its cross-layer impact on the 802.11 MAC dynamics. With the ACK filtering example, we demonstrate the phenomenon and analyze the cause. Based on the analysis, we show how the IEEE 802.11 contention window size control solves the problem.

  • Transfer Function Preserving Transformations on Equal-Ripple RC Polyphase Filters for Reducing Design Efforts

    Hiroaki TANABE  Hiroshi TANIMOTO  

     
    PAPER

      Vol:
    E90-A No:2
      Page(s):
    333-338

    Element value spread of an equal-ripple RC polyphase filter depends heavily on the order of zero assignment. To find the optimum design, we must conduct exhaustive design for all the possible zero assignments. This paper describes two circuit transformations on equal-ripple RC polyphase filters, which preserve their transfer functions, for reducing circuit design efforts. Proposed Method I exchanges (R,C) values to (1/C,1/R) for each stage. This gives a new circuit with different zero assignment for each stage of its original circuit. Method II flips over the original circuit and exchanges the resulting (Ri,Ci) values for (Cn-i+1,Rn-i+1) for each i-th stage. Those circuit transformations can reduce a number of circuit designs down to 1/4 of the straight-forward method. This considerably reduces a burden for exhaustive design for searching the minimum element value spread condition. Some design examples are given to illustrate the proposed methods.

  • Distortion Reduction Filters for Radio-on-Fiber System

    Shingo TANAKA  Noritaka TAGUCHI  Tsuneto KIMURA  Yasunori ATSUMI  

     
    PAPER

      Vol:
    E90-C No:2
      Page(s):
    365-372

    Three distortion reduction filters for radio-on-fiber systems are proposed and evaluated from the standpoint of improvements in in-band third order intermodulation (IM3) components (spurious components), insertion loss, temperature stability and so on. The basic filter configuration includes optical comb filter, RF (radiowave frequency) comb filter, and RF dual band rejection filter (DBRF). Experiments are conducted at 2 GHz band for frequency separation Δf=5 MHz and 100 MHz in the temperature range of -10 to +50. These filters can reduce IM3 components even in the saturation region, unlike conventional linearizers. An optical comb filter can reduce IM3 components more than 20 dB and noise level around 10 dB if its polarization controller is properly adjusted, but its insertion loss is large and stability against vibration is very poor. The proposed RF comb filter and RF-DBRF can reduce IM3 components by more than 20 dB and noise level by more than 3 dB. Their stability against vibration and temperature change is good, and insertion losses are 1-2 dB for Δf=100 MHz.

  • Texture Analysis Using Modified Discrete Radon Transform

    Mahmoud R. HEJAZI  Yo-Sung HO  

     
    PAPER-Pattern Recognition

      Vol:
    E90-D No:2
      Page(s):
    517-525

    In this paper, we address the problem of the rotation-invariant texture analysis. For this purpose, we first present a modified version of the discrete Radon transform whose performance, including accuracy and processing time, is significantly better than the conventional transform in direction estimation and categorization of textural images. We then utilize this transform with a rotated version of Gabor filters to propose a new scheme for texture classification. Experimental results on a set of images from the Brodatz album indicate that the proposed scheme outperforms previous works.

  • Optimization Design of Biorthogonal Wavelets for Embedded Image Coding

    Zaide LIU  Nanning ZHENG  Yuehu LIU  Huub VAN DE WETERING  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E90-D No:2
      Page(s):
    569-578

    We present here a simple technique for parametrization of popular biorthogonal wavelet filter banks (BWFBs) having vanishing moments (VMs) of arbitrary multiplicity. Given a prime wavelet filter with VMs of arbitrary multiplicity, after formulating it as a trigonometric polynomial depending on two free parameters, we prove the existence of its dual filter based on the theory of Diophantine equation. The dual filter permits perfect reconstruction (PR) and also has VMs of arbitrary multiplicity. We then give the complete construction of two-parameter families of 17/11 and 10/18 BWFBs, from which any linear-phase 17/11 and 10/18 BWFB possessing desired features could be derived with ease by adjusting the free parameters. In particular, two previously unpublished BWFBs for embedded image coding are constructed, both have optimum coding gains and rational coef ficients. Extensive experiments show that our new BWFBs exhibit performance equal to Winger's W-17/11 and Villasenor's V-10/18 (superior to CDF-9/7 by Cohen et al. and Villasenor's V-6/10) for image compression, and yet require slightly lower computational costs.

  • Design of FIR Digital Filters Using Hopfield Neural Network

    Yue-Dar JOU  Fu-Kun CHEN  

     
    PAPER-Digital Signal Processing

      Vol:
    E90-A No:2
      Page(s):
    439-447

    This paper is intended to provide an alternative approach for the design of FIR filters by using a Hopfield Neural Network (HNN). The proposed approach establishes the error function between the amplitude response of the desired FIR filter and the designed one as a Lyapunov energy function to find the HNN parameters. Using the framework of HNN, the optimal filter coefficients can be obtained from the output state of the network. With the advantages of local connectivity, regularity and modularity, the architecture of the proposed approach can be applied to the design of differentiators and Hilbert transformer with significantly reduction of computational complexity and hardware cost. As the simulation results illustrate, the proposed neural-based method is capable of achieving an excellent performance for filter design.

  • 4-GHz Inter-Stage-Matched SiGe HBT LNA with Gain Enhancement and No Noise Figure Degradation

    Chinchun MENG  Jhin-Ci JHONG  

     
    LETTER

      Vol:
    E90-A No:2
      Page(s):
    398-400

    An effective way to boost power gain without noise figure degradation in a cascode low noise amplifier (LNA) is demonstrated at 4 GHz using 0.35 µm SiGe HBT technology. This approach maintains the same current consumption because a low-pass π-type LC matching network is inserted in the inter-stage of a conventional cascode LNA. 5 dB gain enhancement with no noise figure degradation at 4 GHz is observed in the SiGe HBT LNA with inter-stage matching.

  • Compact Two-Stage Class-AB CMOS OTA for Low-Voltage Filtering Applications

    Phanumas KHUMSAT  Apisak WORAPISHET  

     
    LETTER-Electronic Circuits

      Vol:
    E90-C No:2
      Page(s):
    543-546

    A compact OTA suitable for low-voltage active-RC and MOSFET-C filters is presented. The input stage of the OTA utilises the resistive tail-biased differential amplifier and the output stage relies upon the feed-forward class AB technique with common-mode rejection capability that incurs no penalty on transconductance/bias-current efficiency. Analysis on the achievable peak voltage swing of the OTA when employed in filters is given. Simulation results of a 0.5-V 100-kHz elliptic 5th-order filter based on the OTA's in a 2-V 0.18 µm CMOS process indicate the differential peak voltage as large as 0.42 Vp (84% of the supply voltage) at 1% THD with the SFDR of 60 dB and the total power consumption of 50 µW.

721-740hit(1579hit)