The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Green(47hit)

21-40hit(47hit)

  • Semi Empirical Approach to the Charge Transport Characteristics of Molecular Junctions

    Aruna P. PRIYA  Preferencial C. KALA  John D. THIRUVADIGAL  

     
    PAPER-Fundamentals for Nanodevices

      Vol:
    E92-C No:12
      Page(s):
    1460-1463

    The idea of using molecules and molecular structures as functional electronic device, promises to substantially decrease the size and improve the performance of electronic devices. In this paper, nonequilibrium Green's function formalism (NEGF) combined with extended Huckel theory (EHT), a semiempirical approach is used to study the electron transport phenomenon in single molecular junction systems. Benzene diamine molecule is studied to investigate the bonding of amine group to gold electrodes and the electron transport across the junction. The results are compared with that of benzene dithiol molecule with thiol end groups. Furthermore, the influence of charging and torsion angle on the transport characteristics is emphasized.

  • Improvement of Luminescent Characteristics of BaGd4Si3O13:Tb Green VUV Phosphor by F-Incorporation

    Atsushi KOBAYASHI  Takashi KUNIMOTO  Akira YAMANE  Koutoku OHMI  

     
    INVITED PAPER

      Vol:
    E91-C No:10
      Page(s):
    1542-1546

    Luminescent characteristics of BaGd4Si3O13:Tb phosphor powder including fluorine, which is synthesized at about 1000, have been investigated. This phosphor shows the green emission due to Tb3+ under VUV excitation. By incorporation of F ion based on low-temperature synthesis, the photoluminescence excitation band lying in the wavelength region from 130 to 170 nm increases drastically in comparison to BaGd4Si3O13:Tb phosphor synthesized at 1550. This phosphor is a candidate for a green PDP phosphor for both 147 nm resonance line and 172 nm excimer band of Xe plasma.

  • Fullband Simulation of Nano-Scale MOSFETs Based on a Non-equilibrium Green's Function Method

    Helmy FITRIAWAN  Matsuto OGAWA  Satofumi SOUMA  Tanroku MIYOSHI  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E91-C No:1
      Page(s):
    105-109

    The analysis of multiband quantum transport simulation in double-gate metal oxide semiconductor field effects transistors (DG-MOSFETs) is performed based on a non-equilibrium Green's function (NEGF) formalism coupled self-consistently with the Poisson equation. The empirical sp3s* tight binding approximation (TBA) with nearest neighbor coupling is employed to obtain a realistic multiband structure. The effects of non-parabolic bandstructure as well as anisotropic features of Si are studied and analyzed. As a result, it is found that the multiband simulation results on potential and current profiles show significant differences, especially in higher applied bias, from those of conventional effective mass model.

  • Compact Representation of Green Function Using Discrete Wavelet Concept for Fast Field Analysis

    Hyung-Hoon KIM  Saehoon JU  Seungwon CHOI  Jong-Il PARK  Hyeongdong KIM  

     
    LETTER-Antennas and Propagation

      Vol:
    E89-B No:12
      Page(s):
    3491-3493

    A compact representation of the Green function is proposed by applying the discrete wavelet concept in the k-domain, which can be used for the acceleration of scattered field calculations in integral equation methods. A mathematical expression of the Green function based on the discrete wavelet concept is derived and its characteristics are discussed.

  • Computational and Memory Complexities of Greengard-Rokhlin's Fast Multipole Algorithm

    Norimasa NAKASHIMA  Mitsuo TATEIBA  

     
    LETTER-Electromagnetic Theory

      Vol:
    E88-C No:7
      Page(s):
    1516-1520

    This paper describes an estimation of the computational and memory complexities of Greengard-Rokhlin's Fast Multipole Algorithm (GRFMA). GRFMA takes a quad tree structure and six calculation processes. We consider a perfect a-ary tree structure and the number of floating-point operations for each calculation process. The estimation for both complexities shows that the perfect quad tree is the best and the perfect binary tree is the worst. When we apply GRFMA to the computation of realistic problems, volume scattering are the best case and surface scattering are the worst case. In the worst case, the computational and memory complexities of GRFMA are O(Llog2 L) and O(Llog L), respectively. The computational complexity of GRFMA is higher than that of the multilevel fast multipole algorithm.

  • Characteristic Comparison between Electric Currents on Upper and Lower Surfaces of Patch Conductor in a Microstrip Antenna

    Takafumi FUJIMOTO  Kazumasa TANAKA  Mitsuo TAGUCHI  

     
    PAPER-Antennas and Propagation

      Vol:
    E88-B No:2
      Page(s):
    729-736

    The electric currents on the upper, lower and side surfaces of the patch conductor in a circular microstrip antenna are calculated by using the integral equation method and the characteristic between the electric currents on the upper and lower surfaces is compared. The integral equation is derived from the boundary condition that the tangential component of the total electric field due to the electric currents on the upper, lower and side surfaces of the patch conductor vanishes on the upper, lower and side surfaces of the patch conductor. The electric fields are derived by using Green's functions in a layered medium due to a horizontal and a vertical electric dipole on those surfaces. The result of numerical calculation shows that the electric current on the lower surface is much bigger than that on the upper surface and the input impedance of microstrip antenna depends on the electric current on the lower surface.

  • Complex Dielectric Image Green's Function via Pade Approximation for On-Chip Interconnects

    Wenliang DAI  Zhengfan LI  Fuhua LI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E87-C No:5
      Page(s):
    772-777

    The complex dielectric image Green's function for metal-insulator-semiconductor (MIS) technology is proposed in this paper through dielectric image method. Then the Epsilon algorithm for Pade approximation is used to accelerate the convergence of the infinite series summation resulted from the complex dielectric image Green's function. Because of the complex dielectric permittivity of semiconducting substrate, the real and imaginary part of the resulted Green's function is accelerated by Epsilon algorithm, respectively. Combined with the complex dielectric image Green's function, the frequency-dependent capacitance and conductance of the transmission lines and interconnects based on MIS technology are investigated through the method of moments (MoM). The computational results of our method for 2-D and 3-D extraction examples are well agreement with experimental data gained from chip measurement and other methods such as full-wave analysis and FastCap.

  • A Novel Spatial Absorbing Layer Using Discrete Green's Function Based on 3D SCN TLM for Waveguide Components

    Byungsoo KIM  Kyesuk JUN  Ihn Seok KIM  

     
    PAPER-Electromagnetic Theory

      Vol:
    E86-C No:12
      Page(s):
    2494-2500

    In this paper, the absorbing property of the discrete Green's function ABC, which was based on a powerful concept of the TLM method, has been improved by relocating loss process from the time domain to the space domain. The proposed scheme simply adds a loss matrix to the connection matrix in the basic TLM algorithm to make the formulation of the ABC more efficient. Various lengths of absorbing layers discretized for a WR-90 empty waveguide have been tested in terms of reflection property. An expression for an optimum absorbing property has been also derived with respect to the length of the layer. Comparison of the layer with the discrete Green's function ABC shows that the layer in this study has improved reflection property better than approximately 3 and 6 dB, respectively, when 50Δ and 60Δ absorbing layers have been adopted for the WR-90 waveguide. Finally, the layer has been applied to a WR-75 metal insert filter as an example.

  • Double-Image Green's Function Method for CMOS Process Oriented Transmission Lines

    Wenliang DAI  Zhengfan LI  Junfa MAO  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E86-C No:12
      Page(s):
    2504-2507

    A novel double-image Green's function approach is proposed to compute the frequency- dependent capacitance and conductance for the general CMOS oriented transmission lines with one protective layer. The ε-algorithm of Pade approximation is adopted to reduce the time for establishing coefficient matrix in this letter. The parameters gained from this new approach are shown to be in good agreement with the data obtained by the full-wave method and the total charge Green's function method.

  • Greengard-Rokhlin's Fast Multipole Algorithm for Numerical Calculation of Scattering by N Conducting Circular Cylinders

    Norimasa NAKASHIMA  Mitsuo TATEIBA  

     
    PAPER

      Vol:
    E86-C No:11
      Page(s):
    2158-2166

    The boundary element method (BEM), a representative method of numerical calculation of electromagnetic wave scattering, has been used for solving boundary integral equations. Using BEM, however, we finally have to solve a linear system of L equations expressed by dense coefficient matrix. The floating-point operation is O(L2) due to a matrix-vector product in iterative process. Greengard-Rokhlin's fast multipole algorithm (GRFMA) can reduce the operation to O(L). In this paper, we describe GRFMA and its floating-point operation theoretically. Moreover, we apply the fast Fourier transform to the calculation processes of GRFMA. In numerical examples, we show the experimental results for the computation time, the amount of used memory and the relative error of matrix-vector product expedited by GRFMA. We also discuss the convergence and the relative error of solution obtained by the BEM with GRFMA.

  • Calculation of Sommerfeld Integrals for Modeling Vertical Dipole Array Antenna for Borehole Radar

    Satoshi EBIHARA  Weng Cho CHEW  

     
    PAPER-Electromagnetic Theory

      Vol:
    E86-C No:10
      Page(s):
    2085-2096

    This paper describes a method for the fast evaluation of the Sommerfeld integrals for modeling a vertical dipole antenna array in a borehole. When we analyze the antenna inside a medium modeled by multiple cylindrical layers with the Method of Moment (MoM), we need a Green's function including the scattered field from the cylindrical boundaries. We focus on the calculation of Green's functions under the condition that both the detector and the source are situated in the innermost layer, since the Green's functions are used to form the impedance matrix of the antenna. Considering bounds on the location of singularities on a complex wave number plane, a fast convergent integration path where pole tracking is unnecessary is considered for numerical integration. Furthermore, as an approximation of the Sommerfeld integral, we describe an asymptotic expansion of the integrals along the branch cuts. The pole contribution of TM01 and HE11 modes are considered in the asymptotic expansion. To obtain numerical results, we use a fast convergent integration path that always proves to be accurate and efficient. The asymptotic expansion works well under specific conditions. The Sommerfeld integral values calculated with the fast evaluation method is used to model the array antenna in a borehole with the MoM. We compare the MoM data with experimental data, and we show the validity of the fast evaluation method.

  • Accurate Closed-Form Green's Function for Coplanar Waveguide from Real-Axis Integration

    Yeon-Duk KANG  Taek-Kyung LEE  

     
    LETTER-Antenna and Propagation

      Vol:
    E86-B No:8
      Page(s):
    2545-2548

    In this paper, we present a technique to obtain an accurate closed-form spatial Green's function for a coplanar waveguide. The integration of the Sommerfeld integrals is performed on the real axis, and the path deformation is avoided in the sampling data. The results are in good agreement with the numerical integration over wide ranges of the signal frequency and the observation distance.

  • Impedance Characteristic Analysis of an Axial Slot Antenna on a Sectoral Cylindrical Cavity Excited by a Probe Using Method of Moments

    Rangsan WONGSAN  Chuwong PHONGCHAROENPANICH  Monai KRAIRIKSH  Jun-ichi TAKADA  

     
    PAPER

      Vol:
    E86-A No:6
      Page(s):
    1364-1373

    This paper presents the analysis of the impedance characteristics of a sectoral cylindrical cavity-backed axial slot antenna excited by a probe. The integral equations are derived based on boundary conditions of the proposed structure and they are expressed in terms of dyadic Green functions and unknown current densities. The dyadic Green functions are obtained by using the eigenfunction expansion method together with application of scattering superposition techniques. The unknown current densities are solved by the Method of Moments. The input impedance is subsequently determined from the unknown electric current density at the probe. Numerical results of input impedance and return loss are demonstrated as functions of frequency for various parameters such as cavity length, cavity radius ratio, slot location in φ direction, slot length and probe length. Calculated results are validated by the measurements. At the operating frequency, it is found that the result is sufficiently accurate. The results from this study are very useful for the design of a sectoral cylindrical cavity-backed axial slot array antenna excited by a probe with omnidirectional beam radiation.

  • Quantum Electron Transport Modeling in Nano-Scale Devices

    Matsuto OGAWA  Hideaki TSUCHIYA  Tanroku MIYOSHI  

     
    INVITED PAPER

      Vol:
    E86-C No:3
      Page(s):
    363-371

    We describe progress we have achieved in the development of our quantum transport modeling for nano-scale devices. Our simulation is based upon either the non-equilibrium Green's function method (NEGF) or the quantum correction (QC) associated with density gradient method (DG) and/or effective potential method (EP). We show the results of our modeling methods applied to several devices and discuss issues faced with regards to computational time, open boundary conditions, and their relationship to self-consistent solution of the Poisson-NEGF equations. We also discuss those for efficiently tailored QC Monte Carlo techniques.

  • A Nonlinear Model on the AQM Algorithm GREEN

    Hongwei KONG  Ning GE  Fang RUAN  Chongxi FENG  Pingyi FAN  

     
    PAPER-Packet Transmission

      Vol:
    E86-B No:2
      Page(s):
    622-629

    In this paper, we propose a nonlinear control model to characterize the AQM algorithm-GREEN. Based on this model, we analyze its performance and prove that there exists a stable oscillation when in equilibrium. Furthermore, we also investigate the effects of the factors such as bandwidth, round trip time, and load level on the amplitude and frequency of the oscillation. Theoretical analysis and simulation results indicate that GREEN algorithm is insensitive to the network conditions when the link rate and the round trip time are relatively small and becomes more sensitive to the change of network conditions when the bandwidth delay product is relatively high. For GREEN the adaptability to a wide range of network conditions is based on the compromising of the efficiency.

  • Efficient Computation of MoM Matrix Elements in Analysis of General Microstrip Structure

    Young-Soon LEE  Eui-Joong KIM  Young-Ki CHO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E85-C No:12
      Page(s):
    2109-2116

    An efficient method for calculating impedance matrix elements is proposed for analysis of microstrip structures with an arbitrary substrate thickness. Closed-form Green's functions are derived by applying the GPOF method to the remaining function after the extraction of the contributions of the surface wave pole, source dipole itself, and quasi-static (i.e.real images) from a spectral domain Green's function. When closed-form Green's functions are used in conjunction with rooftop-pulse subsectional basis functions and the razor testing function in an MoM with an MPIE formulation, the integrals appearing in the calculation procedure of the diagonal matrix elements are of two types. The first is x0n [e^(-jk0(x02 + y02 +a2)1/2)/(x02 + y02 +a2)1/2)]dx0dy0 (where n=0, 1) for the contribution of both the source dipole itself or real images where a=0 and complex images where a=complex constant, while the other is x0n H0(2)(kρp (x02 + y02)1/2)dx0dy0 for the contribution of the surface wave pole where kρp is a real pole due to the surface wave. Adopting a polar coordinate for the integral for both cases of n=0 and n=1 and performing analytical integrations for n=1 with respect to the variable x0 for both types not only removes the singularities but also drastically reduces the evaluation time for the numerical integration. In addition, the above numerical efficiency is also retained for the off-diagonal elements. To validate the proposed method, several numerical examples are presented.

  • Efficient Analysis of Electromagnetic Coupling Problem via Aperture into Parallel Plate Waveguide and Its Application to Electromagnetic Pulse (EMP) Coupling

    Young-Soon LEE  Jong-Kyu KIM  Young-Ki CHO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E85-C No:1
      Page(s):
    212-218

    A numerically efficient analysis method, combining closed-form Green's functions with the method of moments (MoM) of the mixed potential integral equation (MPIE) approach, is considered for the electromagnetic coupling problem through an aperture into a parallel plate waveguide (PPW), as a complementary problem to the microstrip patch structure problem, and then applied to the electromagnetic pulse (EMP) penetration problem. Some discussion on the advantages of the present method is also presented from the perspective of computational electromagnetics.

  • Analysis of Contact Resistance in Composite Materials for Sliding Contacts

    Yoshitada WATANABE  

     
    PAPER

      Vol:
    E83-C No:9
      Page(s):
    1409-1413

    The constriction resistance of an electric contact has frequently been obtained using a model of only one circular contact spot of radius a. However, cases of a single contact spot are extremely rare as the interface of the electrical contact actually consists of numerous micro-contact spots. A contact is therefore regarded as the aggregate of several micro-contact spots, which are referred to collectively as a cluster. The constriction resistance of the cluster can be calculated as the sum of the self-resistance and mutual resistance of individual micro-contact spots. In the present study, this model is expanded slightly for practical application by normalizing a previous theoretical formula. In order to obtain the constriction resistance for contacts between composite materials and mating metals, EPMA analysis is applied so as to determine real micro-contact spots. Theoretical calculations of the constriction resistance of multiple contact spots is shown to be reasonably consistent with experimental results. In addition, the contact of a composite material and a mating metal is shown to be made up of multispots. The current was recognized experimentally to flow more easily at micro-contact spots in the cluster periphery. These experimental findings coincide with simulation results obtained by theoretical calculations.

  • Simulation of Multi-Band Quantum Transport Reflecting Realistic Band Structure

    Matsuto OGAWA  Takashi SUGANO  Ryuichiro TOMINAGA  Tanroku MIYOSHI  

     
    PAPER-Device Modeling and Simulation

      Vol:
    E83-C No:8
      Page(s):
    1235-1241

    Simulation of multi-band quantum transport based on a non-equilibrium Green's functions is presented in resonant tunneling diodes (RTD's), where realistic band structures and space charge effect are taken into account. To include realistic band structure, we have used a multi-band (MB) tight binding method with an sp3s* hybridization. As a result, we have found that the multiband nature significantly changes the results of conventional RTD simulations specifically for the case with indirect-gap barriers.

  • Pure Green Light-Emitting Diodes Based on High Quality ZnTe Substrates and a Thermal Diffusion Process

    Kenji SATO  Mikio HANAFUSA  Akira NODA  Atsutoshi ARAKAWA  Toshiaki ASAHI  Masayuki UCHIDA  Osamu ODA  

     
    PAPER

      Vol:
    E83-C No:4
      Page(s):
    579-584

    Pure green ZnTe light-emitting diodes (LEDs) were first realized reproducibly based on high quality ZnTe substrates and a simple thermal diffusion process. This success which overcomes the compensation effect in II-VI materials is due to the use of high quality p-type ZnTe single crystals with low dislocation densities of the level of 2000 cm-2 grown by the vertical gradient freezing (VGF) method and the suppression of as compensating point defects by low temperature annealing with covering the surface of the substrates by the deposition of n-type dopant, Al. The thermal diffusion coefficient and the activation energy of Al were determined from the pn interface observed by scanning electron spectroscopy (SEM). The formation of the intrinsic pn junctions was confirmed from the electron-beam induced current (EBIC) observation and I-V measurement. The bright 550 nm electroluminescence (EL) from these pn-junctions was reproducibly observed under room light at room temperature, with the lifetime exceeding 1000 hrs.

21-40hit(47hit)