1-6hit |
Ekkarat BOONCHIENG Oran CHIEOCHAN Anukit SAOKAEW
This research aims to find the best practice of prototyping a smart Lingzhi mushroom farm in Thailand. This research applied the use of NodeMCU with a humidity sensor and IOT platform to measure and monitor the humidity in the Lingzhi mushroom farm. The humidity data proceeds through NETPIE was developed and provided by NECTEC, Thailand as a free service for IOT. The humidity data was stored into a NET FEED (a sub service from NETPIE) and displayed on mobile devices and computers through NET FREEBOARD (another sub service of NETPIE). This technology also automatically controlled the sprinkler, fog pumps, and the functional status (switching on and off periodically) of push notifications through LINE API on the LINE Application. The equipment and tools used in this research were NodeMCU, humidity sensor, RTC (real time clock), relay module, sprinkler and fog pumps. C++ and Node.JS were used for programming. The services and protocol used were NETPIE (Network Platform for internet of everything) with subservices such as NETPIE FEED, NETPIE FREEBOARD, and NETPIE REST API. The LINE API was also included. The results of the research show that using NodeMCU with the humidity sensor and IOT platform demonstrates the best practice of smart farming.
Yoshifumi KAWAMURA Naoya OKADA Yoshio MATSUDA Tetsuya MATSUMURA Hiroshi MAKINO Kazutami ARIMOTO
A Field Programmable Sequencer and Memory (FPSM), which is a programmable unit exclusively optimized for peripherals on a micro controller unit, is proposed. The FPSM functions as not only the peripherals but also the standard built-in memory. The FPSM provides easier programmability with a smaller area overhead, especially when compared with the FPGA. The FPSM is implemented on the FPGA and the programmability and performance for basic peripherals such as the 8 bit counter and 8 bit accuracy Pulse Width Modulation are emulated on the FPGA. Furthermore, the FPSM core with a 4K bit SRAM is fabricated in 0.18µm 5 metal CMOS process technology. The FPSM is an half the area of FPGA, its power consumption is less than one-fifth.
Jun FURUTA Kazutoshi KOBAYASHI Hidetoshi ONODERA
We measure neutron-induced Single Event Upsets (SEUs) and Multiple Cell Upsets (MCUs) on Flip-Flops (FFs) in a 65-nm bulk CMOS process in order to evaluate dependence of MCUs on cell distance and well-contact density using four different shift registers. Measurement results by accelerated tests show that MCU/SEU is up to 23.4% and it is exponentially decreased by the distance between latches on FFs. MCU rates can be drastically reduced by inserting well-contact arrays between FFs. The number of MCUs is reduced from 110 to 1 by inserting well-contact arrays under power and ground rails.
Shusuke YOSHIMOTO Shunsuke OKUMURA Koji NII Hiroshi KAWAGUCHI Masahiko YOSHIMOTO
This paper presents a proposed NMOS-centered 6T SRAM cell layout that reduces a neutron-induced multiple-cell-upset (MCU) SER on a same wordline. We implemented an 1-Mb SRAM macro in a 65-nm CMOS process and irradiated neutrons as a neutron-accelerated test to evaluate the MCU SER. The proposed 6T SRAM macro improves the horizontal MCU SER by 67–98% compared with a general macro that has PMOS-centered 6T SRAM cells.
Kuiyuan ZHANG Jun FURUTA Ryosuke YAMAMOTO Kazutoshi KOBAYASHI Hidetoshi ONODERA
According to the process scaling, radiation-hard devices are becoming sensitive to soft errors caused by Multiple Cell Upset (MCUs). In this paper, the parasitic bipolar effects are utilized to suppress MCUs of the radiation-hard dual-modular flip-flops. Device simulations reveal that a simultaneous flip of redundant latches is suppressed by storing opposite values instead of storing the same value due to its asymmetrical structure. The state of latches becomes a specific value after a particle hit due to the bipolar effects. Spallation neutron irradiation proves that MCUs are effectively suppressed in the D-FF arrays in which adjacent two latches in different FFs store opposite values. The redundant latch structure storing the opposite values is robust to the simultaneous flip.
Yusuke HIWASAKI Hitoshi OHMURO Takeshi MORI Sachiko KURIHARA Akitoshi KATAOKA
This paper proposes a wideband speech coder in which a G.711 bitstream is embedded. This coder has an advantage over conventional coders in that it has a high interoperability with existing terminals so costly transcoding involving decoding and re-encoding can be avoided. We also propose a partial mixing method that effectively reduces the mixing complexity in multiple-point remote conferences. To reduce the complexity, we take advantage of the scalable structure of the bitstream and mix only the lower band of the signal. For the higher band, the main speaker location is selected among remote locations and is redistributed with the mixed lower-band signal. By subjective evaluations, we show that the speech quality can be maintained even when the speech signals are partially mixed.