The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] MEC(226hit)

201-220hit(226hit)

  • Electrochemomechanical Deformation in Poly (o-methoxyaniline)

    Masamitsu KANEKO  Keiichi KANETO  

     
    PAPER

      Vol:
    E81-C No:7
      Page(s):
    1064-1069

    Electrochemomechanical deformation (ECMD) of poly(o-methoxyaniline) (PoMAn) film has been studied in various acid solutions, such as Cl-, HSO4-, BF4-, and p-toluene sulfate. The magnitude of ECMD of the film depends linearly on the degree of oxidation of the film similarly to the case of polyaniline (PAn). 2. 53% of deformation ratios along the stretched direction are obtained for 30% of reduction. In contrast to that of PAn, however, the ECMDs of PoMAn do not markedly depend on the kind of anions. Transient responses of current and deformation are investigated by the potential application stepwise and the diffusion coefficient of ions in films. The results are discussed in terms of the effect of substituted methoxy group.

  • Kohonen Learning with a Mechanism, the Law of the Jungle, Capable of Dealing with Nonstationary Probability Distribution Functions

    Taira NAKAJIMA  Hiroyuki TAKIZAWA  Hiroaki KOBAYASHI  Tadao NAKAMURA  

     
    PAPER-Bio-Cybernetics and Neurocomputing

      Vol:
    E81-D No:6
      Page(s):
    584-591

    We present a mechanism, named the law of the jungle (LOJ), to improve the Kohonen learning. The LOJ is used to be an adaptive vector quantizer for approximating nonstationary probability distribution functions. In the LOJ mechanism, the probability that each node wins in a competition is dynamically estimated during the learning. By using the estimated win probability, "strong" nodes are increased through creating new nodes near the nodes, and "weak" nodes are decreased through deleting themselves. A pair of creation and deletion is treated as an atomic operation. Therefore, the nodes which cannot win the competition are transferred directly from the region where inputs almost never occur to the region where inputs often occur. This direct "jump" of weak nodes provides rapid convergence. Moreover, the LOJ requires neither time-decaying parameters nor a special periodic adaptation. From the above reasons, the LOJ is suitable for quick approximation of nonstationary probability distribution functions. In comparison with some other Kohonen learning networks through experiments, only the LOJ can follow nonstationary probability distributions except for under high-noise environments.

  • Design of Filter Using Covariance Information in Continuous-Time Stochastic Systems with Nonlinear Observation Mechanism

    Seiichi NAKAMORI  

     
    PAPER-Digital Signal Processing

      Vol:
    E81-A No:5
      Page(s):
    904-912

    This paper proposes a new design method of a nonlinear filtering algorithm in continuous-time stochastic systems. The observed value consists of nonlinearly modulated signal and additive white Gaussian observation noise. The filtering algorithm is designed based on the same idea as the extended Kalman filter is obtained from the recursive least-squares Kalman filter in linear continuous-time stochastic systems. The proposed filter necessitates the information of the autocovariance function of the signal, the variance of the observation noise, the nonlinear observation function and its differentiated one with respect to the signal. The proposed filter is compared in estimation accuracy with the MAP filter both theoretically and numerically.

  • Passively Mode-Locked Micromechanically-Tunable Semiconductor Lasers

    Yoshitada KATAGIRI  Atsushi TAKADA  Shigendo NISHI  Hiroshi ABE  Yuji UENISHI  Shinji NAGAOKA  

     
    PAPER

      Vol:
    E81-C No:2
      Page(s):
    151-159

    We propose a mechanically tunable passively mode-locked semiconductor laser with a high repetition rate using a simple configuration with a moving mirror located very close to a laser facet. This scheme is demonstrated for the first time by a novel micromechanical laser consisting of an InGaAsP/InP multisegment laser with a monolithic moving micro-mirror driven by an electrostatic comb structure. The main advantage of this laser is the capability of generating high-quality mode-locked pulses stabilized by a phase-locked loop (PLL) with low residual phase noise in a wide repetition-rate tuning range. This paper describes the basic concept and tuning performances utilizing the micromechanical passively mode-locked laser in 22-GHz fundamental mode-locking and in its second-harmonic mode-locking.

  • Structure and Mechanism Estimation of an Articulated Object by Motion Observation

    Takeshi NAGASAKI  Toshio KAWASHIMA  Yoshinao AOKI  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E80-D No:7
      Page(s):
    733-741

    In this paper, we propose a method to construct structure models of articulated objects from multiple local observations of their motion using state transition analysis of local geometric constraints. The object model is constructed by a bottom-up approach with three levels. Each level groups sensor data with a constraint among local features observed by the sensor, and constructs the local model. If the sensor data in current model conflict, the model is reconstructed. In each level, the first level estimates a local geometric feature from the local sensor data (eg. edge, feature point) The second level estimates a rigid body from the local geometric feature. The third level estimates an object from the rigid bodies. In the third level, the constraint between rigid bodies is estimated by transition states, which are motions between rigid bodies. This approach is implemented on a blackboard system.

  • Device Parameter Estimation of SOI MOSFET Using One-Dimensional Numerical Simulation Considering Quantum Mechanical Effects

    Rimon IKENO  Hiroshi ITO  Kunihiro ASADA  

     
    PAPER-Electronic Circuits

      Vol:
    E80-C No:6
      Page(s):
    806-811

    We have been studying on subthreshold characteristics of SOI (Silicon-On-Insulator) MOSFET's in terms of substrate bias dependence using a one-dimensional subthreshold device simulator based on Poisson equation in an SOI multilayer structure for estimating structural parameters of real devices. Here, we consider the quantum mechanical effects in the electron inversion layer of thin SOI MOSFET's, such as the two-dimensionally quantized electron states and transports, with a self-consistent solver of Poisson and Schrodinger equations and a mobility model by the relaxation time approximation. From results of simulations, we found a significant difference between this model and the classical model and concluded that the quantum mechanical effects need to be considered in analizing thin-film SOI devices.

  • Effectiveness of the Fuzzy Policing Mechanism for ATM Networks

    Leonard BAROLLI  Kuninobu TANNO  

     
    LETTER-Artificial Intelligence and Cognitive Science

      Vol:
    E80-D No:5
      Page(s):
    608-613

    ATM networks are proposed by CCITT as the solution for the future B-ISDN. In ATM networks, the cells are transmitted between user and network without flow control, therefore, a policing mechanism (PM) is needed to check that the source traffic doesn't exceed the negotiated parameters. The sources supported by ATM networks have a bursty nature. The control of the mean cell rate of the bursty sources is intended to increase the network utilization. The conventional PMs can't efficiently monitor the mean cell rate of bursty sources, therefore new PMs are needed. In this letter, we propose a fuzzy policing mechanism (FPM). The performance evaluation via simulations shows that the FPM efficiently controls the mean cell rate of the packet voice source. The selectivity characteristics of the FPM approach the ideal characteristic required for a PM.

  • Fast Failure Restoration Algorithm with Reduced Messages Based on Flooding Mechanism

    Komwut WIPUSITWARAKUN  Hideki TODE  Hiromasa IKEDA  

     
    PAPER-Communication Networks and Services

      Vol:
    E80-B No:4
      Page(s):
    564-572

    A highly reliable network which can restore itself from network failures is one important concept for the future high capacity broadband network. In such self-healing network, flooding based failure-restoration algorithm is used to locate new routes and then to reroute failure traffic to that routes automatically when network failures such as link or node failures occur. Since the speed of this algorithm is degraded by the large amount of restoration messages produced by the process, such large volume messages should be reduced. In this paper, the scheme will be proposed, which reduces the large volume messages and efficiently selects alternative routes. In this scheme, the Message Wall will be used to filter useless restoration messages at the tandem nodes and Multi-Message Selecting method will be used to rapidly select a group of link-disjointed alternative routes from the feasible ones in each Flooding Wave sequence. The simulation results show that restoration messages are dramatically reduced and adequate alternative routes can be quickly found out.

  • Basic Properties of Magnetostrictive Actuators Using Tb-Fe and Sm-Fe Thin Films

    Takashi HONDA  Ken Ichi ARAI  Masahiro YAMAGUCHI  

     
    PAPER-Actuator

      Vol:
    E80-C No:2
      Page(s):
    232-238

    A new magnetostrictive thin-film cantilever actuator and a new thin-film walking mechanism were developed. The actuators were made of magnetostrictive amorphous Tb-Fe and Sm-Fe thin films, deposited on the opposite sides of a polyimide film substrate. These actuators need not power supply cables because they were remotely driven by external magnetic fields. The static deflection of a 3-mm-long cantilever actuator was as large as 100 µm at 300 Oe field. Moreover the application of ac resonant frequency field of the same intensity yielded deflection of above 500 µm. The walking mechanism ran as fast as in the order of cm/s. The forward and backward running were possible depending on the frequency of applied magnetic field. Such unique characteristics suggest that magnetostrictive thin-film actuators are useful in MEMS applications.

  • Compact Latching Type Single-Mode Fiber Switches and Their Applications in Subscriber Loop Networks

    Shinji NAGAOKA  

     
    PAPER

      Vol:
    E80-C No:1
      Page(s):
    149-153

    This paper describes the design, characteristics, and applications of newly developed latching-type 1 2 and 1 8 single-mode fiber switches. These switches have been successfully fabricated using micromachine technology. To reduce insertion loss and light reflection, an index-matching oil is injected into the switches. The fabricated 1 2 switches exhibit a low insertion loss of 0.31 dB, high return loss of 51 dB, relatively fast switching speed of 2 ms, and low driving power of 9 mw. Switching operation is stable over 108 switching times. A practical 1 8 single-mode fiber switch was also constructed using seven 1 2 switches cascaded in three stages. The fabricated 1 2 and 1 8 switches have been applied to an NTT multichannel video distribution FTTH system to enhance system reliability.

  • Spectral Features due to Dipole-Dipole Interactions in Optical Harmonic Generation

    Hideaki MATSUEDA  Shozo TAKENO  

     
    PAPER-Control and Optics

      Vol:
    E79-A No:10
      Page(s):
    1707-1712

    The dipole-dipole interaction in the quantum mechanical treatment of the matter-radiation dynamics, is shown to give rise to split energy levels reminiscent of the nonlinear coupled spectral features as well as a self-sustained coherent modes. Wiener's theory of nonlinear random processes is applied to the second harmonic generation (SHG), leading also to coupled spectral pulling and dipping features, due to the dual noise sources in the fundamental and the harmonic polarizations. Furthermore, the nonlinear spectral features are suggested to be applied to implement quantum (qubit) gates for computation.

  • A Block Management Mechanism for Multimedia Files

    Tae Il JEONG  Sung Jo KIM  

     
    PAPER-Computer Systems

      Vol:
    E78-D No:11
      Page(s):
    1498-1508

    In general, multimedia files are much larger than ordinary text files because they consist of multiple monomedia. In order to process large multimedia files in real time, the file system must be able to store and access files efficiently. In th UNIX s5 file system, a multimedia file may be scattered into many disk blocks over the entire disk space, and accessing a multimedia file requires a considerable amount of time for random disk head movement. This paper proposes the internal structure of a multimedia file and its inode which is modified from UNIX s5 file system's. Also, we propose a mechanism for allocating and deallocating contiguous disk blocks for large multimedia files using the bitmap tree and compares its performance with that of the UNIX s5 file system. Our results show that the proposed mechanism reduces considerably the number of disk I/Os required to allocate and deallocate contiguous disk blocks. It also reduces the total access time for large multimedia files by approximately 95% due to the contiguous allocation of disk spaces.

  • Characterisitics of Micromechanical Electrostatic Switch for Active Matrix Displays

    Takashi NISHIO  Chiharu KOSHIO  Kunimoto TSUCHIYA  Tetsuya MATSUMOTO  

     
    PAPER-Electronic Displays

      Vol:
    E78-C No:9
      Page(s):
    1292-1297

    With a view to applying to the active matrix displays, micromechanical electrostatic switches having Si-N both-ends-fixed beam of size 1.4 µm by 23 µm grown with LP-CVD on Si wafer were studied about its kinetic switching characteristics, especially its switching speed and hysteresis behavior. Electrostatic beam sticking problems were improved with the additional inverse polarity and short duration pulse following on the turn-on signal. The switching beam deflection of 0.16 µm with the switching time of less than 100 nsec. was measured by tightly focused laser interferometric method. Observed turn-on threshold voltages were more than 30 V, and the on/off hysteresis widths were from one third to two thirds of its threshold voltage. The memory function was experimented for the 2 msec. long holding period with the hold voltage of 25 V following on the writing pulse with the duration of 2 µsec. and the amplitude of 32 V. Now, planarization process has been considered to imtroduce the contact electrodes that were not built-in for these experiments. Although conductive actual switches were not tested, with the obtained results, it seems that the micromechanical electrostatic switch has the large potentials as an active matrix element in display panel especially in electro-luminescent devices or field-emission devices.

  • A Declarative Synchronization Mechanism for Parallel Object-Oriented Computation

    Takanobu BABA  Norihito SAITOH  Takahiro FURUTA  Hiroshi TAGUCHI  Tsutomu YOSHINAGA  

     
    PAPER-Computer Systems

      Vol:
    E78-D No:8
      Page(s):
    969-981

    We have designed and implemented a simple yet powerful declarative synchronization mechanism for a paralle object-oriented computation model. The mechanism allows the user to control multiple message reception, specify the order of message reception, lock an invocation, and specify relations as invocation constraints. It has been included in a parallel object-oriented language, called A-NETL. The compiler and operating system have been developed on a total architecture, A-NET (Actors NETwork). The experimental results show that (i) the mechanism allows the user to model asynchronous events naturally, without losing the integrity of described programs; (ii) the replacement of the mechanism with the user's code requires tedious descriptions, but gains little performance enhancement, and certainly loses program readability and integrity; (iii) the mechanism allows the user to shift synchronous programs to asynchronous ones, with a scalable reduction of execution times: an average 20.6% for 6 to 17 objects and 46.1% for 65 objects. These prove the effectiveness of the proposed synchronization mechanism.

  • Measurement of Shift in Voltage-Flux Characteristics of SQUID Having Washer Coil Due to Flux-Trapping

    Eriko TAKEDA  Toshikazu NISHINO  Kazumasa TAKAGI  

     
    PAPER-SQUID sensor and multi-channel SQUID system

      Vol:
    E78-C No:5
      Page(s):
    526-530

    The relationship between the flux-trapping phenomenon and the device-structure of a SQUID has been studied using three types of SQUIDs; a SQUID with a guard-ring, a SQUID with a moat, and a SQUID without these structures. The change in the voltage-flux characteristics of the SQUIDs due to the flux-trapping are measured. For the measurements, an acceleration of the flux-trapping is realized by applying a magnetic field during cooling of the SQUIDs. From the measured results, the SQUID with the guard-ring and that with the moat can reject tha external magnetic field more effectively than the SQUID without these structures. The reason of the difference in the rejection of the external magnetic field is thought to be the existence of superconducting closed loops. However, the flux-trapping of the SQUID with the guard-ring and that with the moat occur more easily than the flux-trapping of the SQUID without these structures for the cooling under the finite magnetic field. Therefore, the moat structure and the guard-ring structure need a higher-grade magnetic shielding for a practical use.

  • AlGaAs/GaAs Micromachining for Monolithic Integration of Micromechanical Structures with Laser Diodes

    Yuji UENISHI  Hidenao TANAKA  Hiroo UKITA  

     
    PAPER

      Vol:
    E78-C No:2
      Page(s):
    139-145

    GaAs-based micromachining is a very attractive technique for integrating mechanical structures and active optical devices, such as laser diodes and photodiodes. For monolithically integrating mechanical parts onto laser diode wafers, the micromachining technique must be compatible with the laser diode fabrication process. Our micromachining technique features three major processes: epitaxitial growth (MOVPE) for both the structural and sacrificial layers, reactive dry-etching by chlorine for high-aspect, three-dimensional structures, and selective wet-etching by peroxide/ammonium hydroxide solution to release the moving parts. These processes are compatible with laser fabrication, so a cantilever beam structure can be fabricated at the same time as a laser diode structure. Furthermore, a single-crystal epitaxial layer has little residual stress, so precise microstructures can be obtained without significant deformation. We fabricated a microbeam resonator sensor composed of two laser diodes, a photodiode, and a micro-cantilever beam with an area of 400700 µm. The cantilever beam is 3 µm wide, 5 µm high, and either 110µm long for a 200-kHz resonant frequency or 50 µm long for a 1-MHz resonant frequency. The cantilever beam is excited by an intensity-modulated laser beam from an integrated excitation laser diode; the vibration signal is detected by a coupled cavity laser diode and a photodiode.

  • Estimation of Body Structure by Biomechanical Impedance

    Hisao OKA  Masakazu YASUNA  Shun–ya SAKAMOTO  Takashi FUKUDA  

     
    LETTER

      Vol:
    E77-A No:11
      Page(s):
    1872-1874

    The mechanical impedance of silicone–gel model or chest surface has been measured and the viscoelasticity and effective vibrating radius have been obtained from the impedance. They depend on the distance between the internal block of the silicone–gel/ribs of right chest and the gel surface/skin surface. The 3–D image of internal structure is reconstructed, based on the relation between the distance from the surface and the effective vibrating radius.

  • Measuring System for Optical Disk Mechanical Characteristics

    Takashi YOSHIZAWA  Shigeji HARA  

     
    PAPER-Recording and Memory Technologies

      Vol:
    E77-C No:10
      Page(s):
    1685-1693

    Measuring mechanical characteristics of optical disks is significant not only for designing drives but also for assuring disk interchangeability. This paper shows that the lens-movement detection method has the greatest overall potential and thus fits to a practical system for measuring mechanical characteristics. A system based on this method was constructed by developing simple and accurate capacitive sensors that can be built into an optical head to detect lens movement. The system configuration includes a precision turntable and a high-duarability reference disk to fully extract the potential. Test results show that this measuring system has adequate measuring range, accuracy, and stability. Some applications of this system are described in this paper. They show that the system is useful for evaluating and improving optical disk mechanical characteristics.

  • Mechanical Stress Analysis of Trench Isolation Using a Two-Dimensional Simulation

    Satoshi MATSUDA  Nobuyuki ITOH  Chihiro YOSHINO  Yoshiroh TSUBOI  Yasuhiro KATSUMATA  Hiroshi IWAI  

     
    PAPER-Process Simulation

      Vol:
    E77-C No:2
      Page(s):
    124-128

    Junction leakage current of trench isolation devices is strongly influenced by trench configuration. The origin of the leakage current is the mechanical stress that is generated by the differential thermal expansion between the Si substrate and the SiO2 filled isolation trench during the isolation forming process. A two-dimensional mechanical stress simulation was used to analyze trench-isolated devices. The simulated distribution and magnitude of stress were found to agree with Raman spectroscopic measurements of actual devices. The stress in the deeper regions between deep trenches is likely to increase greatly as the size of devices diminishes, so it is important to reduce this stress and thus suppress junction leakage current.

  • An Indexing Framework for Adaptive Arrangement of Mechanics Problems for ITS

    Tsukasa HIRASHIMA  Toshitada NIITSU  Kentaro HIROSE  Akihiro KASHIHARA  Jun'ichi TOYODA  

     
    PAPER

      Vol:
    E77-D No:1
      Page(s):
    19-26

    This paper describes an indexing framework for adaptive arrangement of mechanics problems in ITS (Intelligent Tutoring System). There have been some studies for adaptive arrangement of problems in ITS. However, they only choose a solution method in order to characterize a problem used in the practice. Because their target domains have been sufficiently formalized, this kind of characterization has sufficed to describe the relations between any two problems of such a class. In other words, here, it is enough to make students understand only the solution methods for the given class of problems. However, in other domains, it is also important to understand concepts used in the problems and not only to understand solution methods. In mechanics problems, concepts such as mechanical objects, their attributes, and phenomena composed of the objects and the attributes also need to be taught. Therefore, the difference between solution methods applied is not sufficient to describe the difference between two given problems. To use this type of problems properly in the practice, it is necessary to propose an advanced new characterization framework. In this paper, we describe a mechanics problem with three components: (1) surface structure, (2) phenomenon structure, (3) solution structure. Surface structure describes surface features of a problem with mechanical objects, their configuration, and each object's attributes given or required in the problem. Phenomenon structure is described by attributes and operational relations among them included in the phenomenon specific to the surface structure. Solution structure is described by a sequence of operational relations which compute required attributes from given attributes. We call this characterizing indexing because we use it as index of each problem. This paper also describes an application of the indexing to arrangement of problems. We propose two mechanisms of control: (a) reordering of a problem sequence, and (b) simplifying of a problem. By now, we have implemented basic functions to realize the mechanisms except for the part of interface.

201-220hit(226hit)