The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] MPO(945hit)

481-500hit(945hit)

  • A New Low-Power 13.56-MHz CMOS Ring Oscillator with Low Sensitivity of fOSC to VDD

    Felix TIMISCHL  Takahiro INOUE  Akio TSUNEDA  Daisuke MASUNAGA  

     
    PAPER

      Vol:
    E91-A No:2
      Page(s):
    504-512

    A design of a low-power CMOS ring oscillator for an application to a 13.56 MHz clock generator in an implantable RFID tag is proposed. The circuit is based on a novel voltage inverter, which is an improved version of the conventional current-source loaded inverter. The proposed circuit enables low-power operation and low sensitivity of the oscillation frequency, fOSC, to decay of the power supply VDD. By employing a gm-boosting subcircuit, power dissipation is decreased to 49 µW at fOSC=13.56 MHz. The sensitivity of fOSC to VDD is reduced to -0.02 at fOSC=13.56 MHz thanks to the use of composite high-impedance current sources.

  • Fuzzy Rule Extraction from Dynamic Data for Voltage Risk Identification

    Chen-Sung CHANG  

     
    PAPER-Artificial Intelligence and Cognitive Science

      Vol:
    E91-D No:2
      Page(s):
    277-285

    This paper presents a methodology for performing on-line voltage risk identification (VRI) in power supply networks using hyperrectangular composite neural networks (HRCNNs) and synchronized phasor measurements. The FHRCNN presented in this study integrates the paradigm of neural networks with the concept of knowledge-based approaches, rendering them both more useful than when applied alone. The fuzzy rules extracted from the dynamic data relating to the power system formalize the knowledge applied by experts when conducting the voltage risk assessment procedure. The efficiency of the proposed technique is demonstrated via its application to the Taiwan Power Provider System (Tai-Power System) under various operating conditions. Overall, the results indicated that the proposed scheme achieves a minimum 97 % success rate in determining the current voltage security level.

  • Rate Control for Zero-Forcing Beamforming Multiuser MIMO Systems with QR-Decomposition MLD Receiver

    Masaaki FUJII  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:2
      Page(s):
    637-640

    A rate control scheme is described for zero-forcing beamforming (ZFBF) multiuser multiple-input and multiple-output (MU-MIMO) systems with a QR-decomposition maximum likelihood detector (MLD) at the receiver. For selected users, a modulation-and-coding set is selected for each substream by estimating the per-substream post-MLD signal-to-interference-plus-noise ratio. Iterative modified QR-decomposition MLD is employed at the receiver to achieve the throughput expected from the transmitter. The simulation results demonstrated that the proposed rate-control scheme achieved the target packet error rate while increasing the throughout for ZFBF-MU-MIMO systems as the number of user candidates increases.

  • A Finite Element-Domain Decomposition Coupled Resistance Extraction Method with Virtual Terminal Insertion

    Bo YANG  Hiroshi MURATA  Shigetoshi NAKATAKE  

     
    PAPER

      Vol:
    E91-A No:2
      Page(s):
    542-549

    This paper addresses the on-resistance (Ron) extraction of the DMOS based driver in Power IC designs. The proposed method can extract Ron of a driver from its layout data for the arbitrarily shaped metallization patterns. Such a driver is usually composed of arbitrarily shaped metals, arrayed vias, and DMOS transistors. We use FEM to extract the parasitic resistance of the source/drain metals since its strong contribution to Ron. In order to handle the large design case and accelerate the extraction process, a domain decomposition with virtual terminal insertion method is introduced, which succeeds in extraction for a set of industrial test cases including those the FEM without domain decomposition failed in. For a layout in which the DMOS cells are regularly placed, a sub-domain reuse procedure is also proposed, which obtained a dramatic speedup for the extraction. Even without the sub-domain reuse, our method still shows advantage in runtime and memory usage according to the simulation results.

  • Image Restoration for Quantifying TFT-LCD Defect Levels

    Kyu Nam CHOI  No Kap PARK  Suk In YOO  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E91-D No:2
      Page(s):
    322-329

    Though machine vision systems for automatically detecting visual defects, called mura, have been developed for thin flat transistor liquid crystal display (TFT-LCD) panels, they have not yet reached a level of reliability which can replace human inspectors. To establish an objective criterion for identifying real defects, some index functions for quantifying defect levels based on human perception have been recently researched. However, while these functions have been verified in the laboratory, further consideration is needed in order to apply them to real systems in the field. To begin with, we should correct the distortion occurring through the capturing of panels. Distortion can cause the defect level in the observed image to differ from that in the panel. There are several known methods to restore the observed image in general vision systems. However, TFT-LCD panel images have a unique background degradation composed of background non-uniformity and vignetting effect which cannot easily be restored through traditional methods. Therefore, in this paper we present a new method to correct background degradation of TFT-LCD panel images using principal component analysis (PCA). Experimental results show that our method properly restores the given observed images and the transformed shape of muras closely approaches the original undistorted shape.

  • Enhanced Vertical Perception through Head-Related Impulse Response Customization Based on Pinna Response Tuning in the Median Plane

    Ki Hoon SHIN  Youngjin PARK  

     
    PAPER-Engineering Acoustics

      Vol:
    E91-A No:1
      Page(s):
    345-356

    Human's ability to perceive elevation of a sound and distinguish whether a sound is coming from the front or rear strongly depends on the monaural spectral features of the pinnae. In order to realize an effective virtual auditory display by HRTF (head-related transfer function) customization, the pinna responses were isolated from the median HRIRs (head-related impulse responses) of 45 individual HRIRs in the CIPIC HRTF database and modeled as linear combinations of 4 or 5 basic temporal shapes (basis functions) per each elevation on the median plane by PCA (principal components analysis) in the time domain. By tuning the weight of each basis function computed for a specific height to replace the pinna response in the KEMAR HRIR at the same height with the resulting customized pinna response and listening to the filtered stimuli over headphones, 4 individuals with normal hearing sensitivity were able to create a set of HRIRs that outperformed the KEMAR HRIRs in producing vertical effects with reduced front/back ambiguity in the median plane. Since the monaural spectral features of the pinnae are almost independent of azimuthal variation of the source direction, similar vertical effects could also be generated at different azimuthal directions simply by varying the ITD (interaural time difference) according to the direction as well as the size of each individual's own head.

  • Universally Composable Identity-Based Encryption

    Ryo NISHIMAKI  Yoshifumi MANABE  Tatsuaki OKAMOTO  

     
    PAPER-Security Notions

      Vol:
    E91-A No:1
      Page(s):
    262-271

    Identity-based encryption (IBE) is one of the most important primitives in cryptography, and various security notions of IBE (e.g., IND-ID-CCA2, NM-ID-CCA2, IND-sID-CPA etc.) have been introduced. The relations among them have been clarified recently. This paper, for the first time, investigates the security of IBE in the universally composable (UC) framework. This paper first defines the UC-security of IBE, i.e., we define the ideal functionality of IBE, FIBE. We then show that UC-secure IBE is equivalent to conventionally-secure (IND-ID-CCA2-secure) IBE.

  • On the Equivalence of Several Security Notions of KEM and DEM

    Waka NAGAO  Yoshifumi MANABE  Tatsuaki OKAMOTO  

     
    PAPER-Security Notions

      Vol:
    E91-A No:1
      Page(s):
    283-297

    KEM (Key Encapsulation Mechanism) and DEM (Data Encapsulation Mechanism) were introduced by Shoup to formalize the asymmetric encryption specified for key distribution and the symmetric encryption specified for data exchange in ISO standards on public-key encryption. Shoup defined the "semantic security (IND) against adaptive chosen ciphertext attacks (CCA2)" as a desirable security notion of KEM and DEM, that is, IND-CCA2 KEM and IND-CCA2 DEM. This paper defines "non-malleability (NM)" for KEM, which is a stronger security notion than IND. We provide three definitions of NM for KEM, and show that these three definitions are equivalent. We then show that NM-CCA2 KEM is equivalent to IND-CCA2 KEM. That is, we show that NM is equivalent to IND for KEM under CCA2 attacks, although NM is stronger than IND in the definition (or under some attacks like CCA1). In addition, this paper defines the universally composable (UC) security of KEM and DEM, and shows that IND-CCA2 KEM (or NM-CCA2 KEM) is equivalent to UC KEM and that "IND against adaptive chosen plaintext/ciphertext attacks (IND-P2-C2)" DEM is equivalent to UC DEM.

  • EEG-Based Classification of Motor Imagery Tasks Using Fractal Dimension and Neural Network for Brain-Computer Interface

    Montri PHOTHISONOTHAI  Masahiro NAKAGAWA  

     
    PAPER-Rehabilitation Engineering and Assistive Technology

      Vol:
    E91-D No:1
      Page(s):
    44-53

    In this study, we propose a method of classifying a spontaneous electroencephalogram (EEG) approach to a brain-computer interface. Ten subjects, aged 21-32 years, volunteered to imagine left- and right-hand movements. An independent component analysis based on a fixed-point algorithm is used to eliminate the activities found in the EEG signals. We use a fractal dimension value to reveal the embedded potential responses in the human brain. The different fractal dimension values between the relaxing and imaging periods are computed. Featured data is classified by a three-layer feed-forward neural network based on a simple backpropagation algorithm. Two conventional methods, namely, the use of the autoregressive (AR) model and the band power estimation (BPE) as features, and the linear discriminant analysis (LDA) as a classifier, are selected for comparison in this study. Experimental results show that the proposed method is more effective than the conventional methods.

  • BDD Representation for Incompletely Specified Multiple-Output Logic Functions and Its Applications to the Design of LUT Cascades

    Munehiro MATSUURA  Tsutomu SASAO  

     
    PAPER-Logic Synthesis and Verification

      Vol:
    E90-A No:12
      Page(s):
    2762-2769

    A multiple-output function can be represented by a binary decision diagram for characteristic function (BDD_for_CF). This paper presents a method to represent multiple-output incompletely specified functions using BDD_for_CFs. An algorithm to reduce the widths of BDD_for_CFs is presented. This method is useful for decomposition of incompletely specified multiple-output functions. Experimental results for radix converters, adders, a multiplier, and lists of English words show that this method is useful for the synthesis of LUT cascades. An implementation of English words list by LUT cascades and an auxiliary memory is also shown.

  • Joint Optimization of Power Allocation and Detection Ordering for Closed-Loop OSIC System

    Deok-Kyu HWANG  Seung-Hoon HWANG  Keum-Chan WHANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:12
      Page(s):
    3606-3611

    In this paper, we investigate a detection ordering scheme of OSIC (Ordered Successive Interference Cancellation) systems suitable for power controlled MIMO transmission. Most studies about power controlled systems have mainly focused on strategies for transmitter, while the ordering scheme optimized at open-loop system has not been modified. In a conventional ordering scheme, the ordering process is done according to the largeness and smallness relation of each sub-stream's SNR. Unlike the conventional scheme, we derive an optimized detection ordering scheme that uses proximity to the optimal SNR. Because of error propagation, our proximity based algorithm is not valid for open-loop MIMO system in many cases. An optimization problem analysis and simulation results show that the system using the proposed ordering scheme outperforms the system using the conventional ordering scheme. Furthermore, due to the nature of QR decomposition, the proposed scheme shows not only lower implementation complexity but also better BER performance compared with the conventional scheme based on pseudo-inverse.

  • Kalman-Filter Based Estimation of Electric Load Composition with Non-ideal Transformer Modeling

    Soon LEE  Seung-Mook BAEK  Jung-Wook PARK  Young-Hyun MOON  

     
    PAPER-Numerical Analysis and Optimization

      Vol:
    E90-A No:12
      Page(s):
    2877-2883

    This paper presents a study to estimate the composition of an electric load, i.e. to determine the amount of each load class by the direct measurements of the total electric current waveform from instrument reading. Kalman filter algorithm is applied to estimate the electric load composition on a consumer side of a distributed power system. The electric load supplied from the different voltage level by using a non-ideal delta-wye transformer is also studied with consideration of the practical environment for a distributed power system.

  • Improving Performance and Energy Saving in a Reconfigurable Processor via Accelerating Control Data Flow Graphs

    Farhad MEHDIPOUR  Hamid NOORI  Morteza SAHEB ZAMANI  Koji INOUE  Kazuaki MURAKAMI  

     
    PAPER-Reconfigurable Device and Design Tools

      Vol:
    E90-D No:12
      Page(s):
    1956-1966

    Extracting frequently executed (hot) portions of the application and executing their corresponding data flow graph (DFG) on the hardware accelerator brings about more speedup and energy saving for embedded systems comprising a base processor integrated with a tightly coupled accelerator. Extending DFGs to support control instructions and using Control DFGs (CDFGs) instead of DFGs results in more coverage of application code portion are being accelerated hence, more speedup and energy saving. In this paper, motivations for extending DFGs to CDFGs and handling control instructions are introduced. In addition, basic requirements for an accelerator with conditional execution support are proposed. Then, two algorithms are presented for temporal partitioning of CDFGs considering the target accelerator architectural constraints. To demonstrate effectiveness of the proposed ideas, they are applied to the accelerator of a reconfigurable processor called AMBER. Experimental results approve the remarkable effectiveness of covering control instructions and using CDFGs versus DFGs in the aspects of performance and energy reduction.

  • Temporal Partitioning to Amortize Reconfiguration Overhead for Dynamically Reconfigurable Architectures

    Jinhwan KIM  Jeonghun CHO  Tag Gon KIM  

     
    PAPER-Reconfigurable Device and Design Tools

      Vol:
    E90-D No:12
      Page(s):
    1977-1985

    In these days, many dynamically reconfigurable architectures have been introduced to fill the gap between ASICs and software-programmed processors such as GPPs and DSPs. These reconfigurable architectures have shown to achieve higher performance compared to software-programmed processors. However, reconfigurable architectures suffer from a significant reconfiguration overhead and a speedup limitation. By reducing the reconfiguration overhead, the overall performance of reconfigurable architectures can be improved. Therefore, we will describe temporal partitioning, which are able to amortize the reconfiguration overhead at synthesis phase or compilation time. Our temporal partitioning methodology splits a configuration context into temporal partitions to amortize reconfiguration overhead. And then, we will present benchmark results to demonstrate the effectiveness of our methodology.

  • NRD-Guide Passive Components and Devices for Millimeter Wave Wireless Applications

    Tsukasa YONEYAMA  Hirokazu SAWADA  Takashi SHIMIZU  

     
    INVITED PAPER

      Vol:
    E90-C No:12
      Page(s):
    2170-2177

    Owing to simple structure, low cost and high performance, NRD-guide millimeter wave circuits have attracted much attention in recent years. In this paper, a variety of NRD-guide passive components are reviewed with emphasis on design techniques and performance estimation in the 60 GHz frequency band where the license-free advantage is available. The passive components to be discussed here include compact bends, wideband hybrid couplers, practical three-port junctions, versatile E-plane filters, and effective feeding structures for lens antennas. Some of them are employed to construct millimeter wave transceivers. Eye patterns observed at 1.5 Gbps confirm the potential ability of the fabricated NRD-guide transceivers for high bit-rate, wireless applications.

  • A Parallel Algorithm for NMNF Problems with a Large Number of Capacity Constraints

    Shieh-Shing LIN  

     
    PAPER-Numerical Analysis and Optimization

      Vol:
    E90-A No:12
      Page(s):
    2884-2890

    In this paper, we propose a converting technique based method to solve nonlinear multi-commodity network flow (NMNF) problems with a large number of capacity constraints and discuss the associated implementation. We have combined this method with a successive quadratic programming (SQP) method and a parallel dual-type (PDt) method possessing decomposition effects. We have tested our method in solving a kind of lattice-type network system examples of NMNF problems. The simulation results show that the proposed algorithm is efficient for solving NMNF problems and successfully handles a large number of coupling capacity constraints. Furthermore, the computational efficiency of the proposed algorithm is more significant while the numbers of capacity constraints are increased.

  • Pseudo Eigenbeam-Space Division Multiplexing (PE-SDM) in Frequency-Selective MIMO Channels

    Hiroshi NISHIMOTO  Toshihiko NISHIMURA  Takeo OHGANE  Yasutaka OGAWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:11
      Page(s):
    3197-3207

    In a frequency-selective multiple-input multiple-output (MIMO) channel, the optimum transmission is achieved by beamforming with eigenvectors obtained at each discrete frequency point, i.e., an extension of eigenbeam-space division multiplexing (E-SDM). However, the calculation load of eigenvalue decomposition at the transmitter increases in proportion to the number of frequency points. In addition, frequency-independent eigenvectors increase the delay spread of the effective channel observed at the receiver. In this paper, we propose a pseudo eigenvector scheme for the purpose of mitigating the calculation load and maintaining frequency continuity (or decreasing the delay spread). First, we demonstrate that pseudo eigenvectors reduce the delay spread of the effective channels with low computational complexity. Next, the practical performance of the pseudo E-SDM (PE-SDM) transmission is evaluated. The simulation results show that PE-SDM provides almost the same or better performance compared with E-SDM when the receiver employs a time-windowing-based channel estimation available in the low delay spread cases.

  • Hierarchical Decomposition of Depth Map Sequences for Representation of Three-Dimensional Dynamic Scenes

    Sung-Yeol KIM  Yo-Sung HO  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E90-D No:11
      Page(s):
    1813-1820

    In this paper, we propose a new scheme to represent three-dimensional (3-D) dynamic scenes using a hierarchical decomposition of depth maps. In the hierarchical decomposition, we split a depth map into four types of images: regular mesh, boundary, feature point and number-of-layer (NOL) images. A regular mesh image is obtained by down-sampling a depth map. A boundary image is generated by gathering pixels of the depth map on the region of edges. For generating feature point images, we select pixels of the depth map on the region of no edges according to their influence on the shape of a 3-D surface, and convert the selected pixels into images. A NOL image includes structural information to manage the other three images. In order to render a frame of 3-D dynamic scenes, we first generate an initial surface utilizing the information of regular mesh, boundary and NOL images. Then, we enhance the initial surface by adding the depth information of feature point images. With the proposed scheme, we can represent consecutive 3-D scenes successfully within the framework of a multi-layer structure. Furthermore, we can compress the data of 3-D dynamic scenes represented by a mesh structure by a 2-D video coder.

  • Improved Variant of Pisarenko Harmonic Decomposition for Single Sinusoidal Frequency Estimation

    Kenneth Wing-Kin LUI  Hing-Cheung SO  

     
    LETTER-Digital Signal Processing

      Vol:
    E90-A No:11
      Page(s):
    2604-2607

    It is well known that Pisarenko's frequency estimate for a single real tone can be computed easily using the sample covariance with lags 1 and 2. In this Letter, we propose to use alternative covariance expressions, which are inspired from the modified covariance (MC) frequency estimator, in Pisarenko's algorithm. Computer simulations are included to corroborate the theoretical development of the variant and to demonstrate its superiority over the MC and Pisarenko's methods.

  • An On-Demand QoS Service Composition Protocol for MANETs

    Songqiao HAN  Shensheng ZHANG  Guoqi LI  Yong ZHANG  

     
    LETTER-Networks

      Vol:
    E90-D No:11
      Page(s):
    1877-1880

    This paper presents an active quality of service (QoS) aware service composition protocol for mobile ad hoc networks (MANETs), with the goal of conserving resources subject to QoS requirements. A problem of QoS based service composition in MANETs is transformed into a problem of the service path discovery. We extend Dynamic Source Routing protocol to discover and compose elementary services across the network. Some message processing measures are taken to effectively reduce control overhead. Simulation results demonstrate the effectiveness of the proposed protocol.

481-500hit(945hit)