The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] MPO(945hit)

581-600hit(945hit)

  • Separation of Mixed Audio Signals by Decomposing Hilbert Spectrum with Modified EMD

    Md. Khademul Islam MOLLA  Keikichi HIROSE  Nobuaki MINEMATSU  

     
    PAPER-Speech/Audio Processing

      Vol:
    E89-A No:3
      Page(s):
    727-734

    The Hilbert transformation together with empirical mode decomposition (EMD) produces Hilbert spectrum (HS) which is a fine-resolution time-frequency representation of any nonlinear and non-stationary signal. The EMD decomposes the mixture signal into some oscillatory components each one is called intrinsic mode function (IMF). Some modification of the conventional EMD is proposed here. The instantaneous frequency of every real valued IMF component is computed with Hilbert transformation. The HS is constructed by arranging the instantaneous frequency spectra of IMF components. The HS of the mixture signal is decomposed into subspaces corresponding to the component sources. The decomposition is performed by applying independent component analysis (ICA) and Kulback-Leibler divergence based K-means clustering on the selected number of bases derived from HS of the mixture. The time domain source signals are assembled by applying some post processing on the subspaces. We have produced experimental results using the proposed separation technique.

  • Design of MIMO Communication Systems Using Tapped Delay Line Structure in Receiver Side

    Tetsuki TANIGUCHI  Hoang Huy PHAM  Nam Xuan TRAN  Yoshio KARASAWA  

     
    PAPER-Communications

      Vol:
    E89-A No:3
      Page(s):
    670-677

    This paper presents a simple method to determine weights of single carrier multiple input multiple output (MIMO) broadband communication systems adopting tapped delay line (TDL) structure in receiver side for the effective communication under frequency selective fading (FSF) environment. First, assuming the perfect knowledge of the channel matrix in both arrays, an iterative design method of transmitter and receiver weights is proposed. In this approach, both weights are determined alternately to maximize signal to noise plus interference ratio (SINR) by fixing the weight of one side while optimizing the other, and this operation is repeated until SINR converges. Next, considering the case of uninformed transmitter, maximum SINR design method of MIMO system is extended for space time block coding (STBC) scheme working under FSF. Through computer simulations, it is demonstrated that the proposed schemes achieves higher SINR than conventional method with delay-less structure, particularly for the fading with long duration.

  • High-Speed MT Connector Assembly Method

    Koji SHIBATA  Masaaki TAKAYA  Kazuo HOGARI  Izumi SANKAWA  Tadashi HAIBARA  

     
    PAPER-Optical Fiber for Communications

      Vol:
    E89-B No:2
      Page(s):
    413-418

    This paper describes a high-speed MT connector assembly method. This technique uses adhesive with a short hardening time, is highly reliable and does not require a polishing process, thus reducing the connector assembly time. First, we investigated an alpha-cyanoacrylate adhesive that hardens quickly and whose adhesive strength does not decrease under high humidity and high temperature conditions, thus ensuring its excellent reliability for outside use. In addition, we investigated variations in the position of the fiber endface on the ferrule endface with a view to obtaining a low insertion loss. Based on the results, we assembled an MT connector using our proposed high-speed assembly method. We confirmed that the assembly time could be reduced to less than 70% of the time required with the conventional method. MT connectors assembled using this technique have a low insertion loss and stable environmental characteristics.

  • Channel Estimation with Selective Superimposed Pilot Sequences under Fast Fading Environments

    Fumiaki TSUZUKI  Tomoaki OHTSUKI  

     
    PAPER-Antennas and Propagation

      Vol:
    E89-B No:2
      Page(s):
    556-563

    Recently, superimposed pilot channel estimation has been proposed for wireless communications, where the pilot symbol sequence is superimposed on a data symbol sequence and transmitted together, and thus there is no drop in information rate. In this scheme, the receiver correlates the received signal sequence with the pilot symbol sequence, and obtains the channel estimate. However, the correlation between the pilot symbol sequence and the data symbol sequence deteriorates the channel estimation accuracy. The use of the longer frame leads to the lower correlation, but also to the lower channel tracking capability. In this paper, we propose a selective superimposed pilot channel estimation scheme with selecting a pilot sequence that has a low correlation with a data symbol sequence from the set of the pilot sequences assigned to the transmitter. Note that the superimposed channel estimation scheme with one pilot sequence assigned to the transmitter is the conventional superimposed channel estimation scheme. We show that the proposed channel estimation scheme is superior to the conventional superimposed channel estimation scheme (pilot sequence = 1). We also show that the proposed channel estimation scheme can achieve the good channel estimate even under fast fading environments. Moreover, we show that the proposed channel estimation scheme is superior to the pilot assisted channel estimation scheme, although pilot symbol power is a deterioration factor in the proposed channel estimation scheme.

  • ECA Rule-Based Workflow Modeling and Implementation for Service Composition

    Lin CHEN  Minglu LI  Jian CAO  

     
    PAPER-Grid Computing

      Vol:
    E89-D No:2
      Page(s):
    624-630

    Changes in recent business and scientific environment have created a necessity for more efficient and effective workflow infrastructure. With increasing emphasis on Service-oriented architecture, service composition becomes a hot topic in workflow research. This paper proposes a novel approach of using ECA rules to realize the workflow modeling and implementation for service composition. First of all, the concept and formalization of ECA rule-based workflow is presented. Special activities and data structures are customized for the purpose of service composition. Second, an automatic event composition and decomposition algorithm is developed to ensure the correctness and validness of service composition at design time. Finally, the proposed ECA rule-based approach for service composition is illustrated through the implementation of a workflow prototype system.

  • Reducing Stopband Peak Errors of R-Regular 4th-Band Linear Phase FIR Filters by Superimposing

    LinnAung PE  Toshinori YOSHIKAWA  Yoshinori TAKEI  Xi ZHANG  Yasunori SUGITA  

     
    LETTER-Digital Signal Processing

      Vol:
    E89-A No:2
      Page(s):
    615-619

    R-regular Mth band filters are an important class of digital filters and are used in constructing Mth-band wavelet filter banks, where the regularity is essential. But this kind of filter has larger stopband peak errors compared with a minimax filter of the same length. In this paper, peak errors in stopband of R-regular 4th-band filters are reduced by means of superimposing two filters with successive regularities. Then the stopband peak errors in the resulting filters are compared with the original ones. The results show that the stopband peak errors are reduced significantly in the synthesized filter that has the same length as the longer one of the two original filters, at the cost of regularity.

  • No Reference and Reduced Reference Video Quality Metrics for End to End QoS Monitoring

    Patrick LE CALLET  Christian VIARD-GAUDIN  Stephane PECHARD  Emilie CAILLAULT  

     
    PAPER

      Vol:
    E89-B No:2
      Page(s):
    289-296

    This paper describes an objective measurement method designed to assess the perceived quality for digital videos. The proposed approach can be used either in the context of a reduced reference quality assessment or in the more challenging situation where no reference is available. In that way, it can be deployed in a QoS monitoring strategy in order to control the end-user perceived quality. The originality of the approach relies on the very limited computation resources which are involved, such a system could be integrated quite easily in a real time application. It uses a convolutional neural network (CNN) that allows a continuous time scoring of the video. Experiments conducted on different MPEG-2 videos, with bit rates ranging from 2 to 6 Mbits/s, show the effectiveness of the proposed approach. More specifically, a linear correlation criterion, between objective and subjective scoring, ranging from 0.90 up to 0.95 has been obtained on a set of typical TV videos in the case of a reduced reference assessment. Without any reference to the original video, the correlation criteria remains quite satisfying since it still lies between 0.85 and 0.90, which is quite high with respect to the difficulty of the task, and equivalent and more in some cases than the traditional PSNR, which is a full reference measurement.

  • A Universally Composable Secure Channel Based on the KEM-DEM Framework

    Waka NAGAO  Yoshifumi MANABE  Tatsuaki OKAMOTO  

     
    PAPER-Public Key Cryptography

      Vol:
    E89-A No:1
      Page(s):
    28-38

    As part of ISO standards on public-key encryption, Shoup introduced the framework of KEM (Key Encapsulation Mechanism), and DEM (Data Encapsulation Mechanism), for formalizing and realizing one-directional hybrid encryption; KEM is a formalization of asymmetric encryption specified for key distribution, which DEM is a formalization of symmetric encryption. This paper investigates a more general hybrid protocol, secure channel, that uses KEM and DEM, while KEM supports distribution of a session key and DEM, along with the session key, is used for multiple bi-directional encrypted transactions in a session. This paper shows that KEM, which is semantically secure against adaptively chosen ciphertext attacks (IND-CCA2), and DEM, which is semantically secure against adaptively chosen plaintext/ciphertext attacks (IND-P2-C2), along with secure signatures and ideal certification authority are sufficient to realize a universally composable (UC) secure channel. To obtain the main result, this paper also shows several equivalence results: UC KEM, IND-CCA2 KEM and NM-CCA2 (non-malleable against CCA2) KEM are equivalent, and UC DEM, IND-P2-C2 DEM and NM-P2-C2 DEM are equivalent.

  • Realization of 3 m Semi Anechoic Chamber by Using Hybrid EM Wave Absorber Consisting of Composite Magnetic Material

    Hiroshi KURIHARA  Motonari YANAGAWA  Yoshikazu SUZUKI  Toshifumi SAITO  

     
    LETTER

      Vol:
    E89-C No:1
      Page(s):
    69-71

    This letter proposes the thinnest hybrid EM wave absorber using a composite magnetic material, which can be applied to the 3 m semi anechoic chambers. We experimentally designed a new hybrid EM wave absorber of the wedge shape, which was made from the ferrite powder, the inorganic fiber and binder. As a result, the length of this absorber could be realized only 6 cm, which was ascertained having the nonflammable. The 3 m semi anechoic chamber is constructed in the size of L9 mW6 mH5.7 m using this absorber, and then the site attenuation is measured according to ANSI C63.4 in the frequency range of 30 MHz-1 GHz. As a result, the measured normalized site attenuation is obtained within 3 dB to the theoretical normalized site attenuation.

  • Variable Frame Skipping Scheme Based on Estimated Quality of Non-coded Frames at Decoder for Real-Time Video Coding

    Tien-Ying KUO  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E88-D No:12
      Page(s):
    2849-2856

    This paper proposes a block-based video encoder employing variable frame skipping (VFS) to improve the video quality in low bit rate channel. The basic idea of VFS mechanism is to decide and skip a suitable, non-fixed number of frames in temporal domain to reduce bit usage. The saved bits can be allocated to enhance the spatial quality of video. In literature, several methods of frame skipping decision have been proposed, but most of them only consider the similarities between neighboring coded frames as the decision criteria. Our proposed method takes into account the reconstruction of the skipped frames using motion-compensated frame interpolation at decoder. The proposed VFS models the reconstructed objective quality of the skipped frame and, therefore, can provide a fast estimate to the frame skipping at encoder. The proposed VFS can determine the suitable frame skipping in real time and provide the encoded video with better spatial-temporal bit allocation.

  • A Design Algorithm for Sequential Circuits Using LUT Rings

    Hiroki NAKAHARA  Tsutomu SASAO  Munehiro MATSUURA  

     
    PAPER-Logic Synthesis

      Vol:
    E88-A No:12
      Page(s):
    3342-3350

    This paper shows a design method for a sequential circuit by using a Look-Up Table (LUT) ring. The method consists of two steps: The first step partitions the outputs into groups. The second step realizes them by LUT cascades, and allocates the cells of the cascades into the memory. The system automatically finds a fast implementation by maximally utilizing available memory. With the presented algorithm, we can easily design sequential circuits satisfying given specifications. The paper also compares the LUT ring with logic simulator to realize sequential circuits: the LUT ring is 25 to 237 times faster than a logic simulator that uses the same amount of memory.

  • Hybrid Image Composition Mechanism for Enhancing Volume Graphics Clusters

    Jorji NONAKA  Nobuyuki KUKIMOTO  Yasuo EBARA  Masato OGATA  Takeshi IWASHITA  Masanori KANAZAWA  Koji KOYAMADA  

     
    PAPER-Computer Graphics

      Vol:
    E88-D No:11
      Page(s):
    2582-2590

    Volume Graphics Clusters (VG Clusters) have proven to be efficient in a wide range of visualization applications and have also shown promise in some other applications where the image composition device could be fully utilized. The main differentiating feature from other graphics clusters is a specialized image composition device, commercially available as the MPC Image Compositor, which enables the building of do-it-yourself VG Clusters. Although this device is highly scalable, the unidirectional composition flow limits the data subdivision to the quantity of physically available rendering nodes. In addition, the limited buffer memory limits the maximum capable image composition size, therefore limiting its use in large-scale data visualization and high-resolution visualization. To overcome these limitations, we propose and evaluate an image composition mechanism in which additional hardware is used for assisting the image composition process. Because of the synergistic use of two distinct image composition hardware devices we named it "Hybrid Image Composition". Some encouraging results were obtained showing the effectiveness of this solution in improving the VG Cluster 's potential. A low-cost parallel port based hardware barrier is also presented as an efficient method for further enhancing this kind of small-scale VG Cluster. Moreover, this solution has proven to be especially useful in clusters built using low-speed networks, such as Fast Ethernet, which are still in common use.

  • A New Iris Recognition Method Using Independent Component Analysis

    Seung-In NOH  Kwanghyuk BAE  Kang Ryoung PARK  Jaihie KIM  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E88-D No:11
      Page(s):
    2573-2581

    In a conventional method based on quadrature 2D Gabor wavelets to extract iris features, the iris recognition is performed by a 256-byte iris code, which is computed by applying the Gabor wavelets to a given area of the iris. However, there is a code redundancy because the iris code is generated by basis functions without considering the characteristics of the iris texture. Therefore, the size of the iris code is increased unnecessarily. In this paper we propose a new feature extraction algorithm based on independent component analysis (ICA) for a compact iris code. We implemented the ICA to generate optimal basis functions which could represent iris signals efficiently. In practice the coefficients of the ICA expansions are used as feature vectors. Then iris feature vectors are encoded into the iris code for storing and comparing individual's iris patterns. Additionally, we introduce a method to refine the ICA basis functions for improving the recognition performance. Experimental results show that our proposed method has a similar equal error rate as a conventional method based on the Gabor wavelets, and the iris code size of our proposed methods is five times smaller than that of the Gabor wavelets.

  • Properties of Role-Based Access Control in a Teaching Management System

    Kazushi TANIHIRA  Hiromi KOBAYASHI  

     
    LETTER-Educational Technology

      Vol:
    E88-D No:10
      Page(s):
    2417-2421

    This paper presents properties of role-based access control which were obtained through a development of a prototype of a teaching management system. These properties are related to assignment of temporal constraints and access control procedure in terms of the corresponding flow of user's view and considered to be suitable to other information systems.

  • Simulation Probability Density Function Design for Turbo Codes

    Takakazu SAKAI  

     
    PAPER-Coding Theory

      Vol:
    E88-A No:10
      Page(s):
    2715-2720

    We research on an importance sampling (IS) simulation to estimate a low error probability of turbo codes. The simulation time reduction in IS depends on another probability density function (p.d.f.) called simulation p.d.f. The previous IS simulation method can not evaluate the error probability on the low SNR and waterfall region. We derive the optimal simulation p.d.f. which gives the perfect estimator. A new simulation p.d.f. design, which is related to the optimal one, is proposed to overcome the problem of the previous IS method. The proposed IS simulation can evaluate all possible error patterns. Finally, some computer simulations show that the proposed method can evaluate the error probability on the low SNR, waterfall, and error floor regions. At the evaluation of the BER of 10-7, the simulation time of the proposed method is about 1/350 times as short as that of the Monte-Carlo simulation. When the BER is less than 710-8, the proposed method requires shorter simulation time than the conventional IS method.

  • Composite Support Vector Machines with Extended Discriminative Features for Accurate Face Detection

    Tae-Kyun KIM  Josef KITTLER  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E88-D No:10
      Page(s):
    2373-2379

    This paper describes a pattern classifier for detecting frontal-view faces via learning a decision boundary. The proposed classifier consists of two major parts for improving classification accuracy: the implicit modeling of both the face and the near-face classes resulting in an extended discriminative feature set, and the subsequent composite Support Vector Machines (SVMs) for speeding up the classification. For the extended discriminative feature set, Principal Component Analysis (PCA) or Independent Component Analysis (ICA) is performed for the face and near-face classes separately. The projections and distances to the two different subspaces are complementary, which significantly enhances classification accuracy of SVM. Multiple nonlinear SVMs are trained for the local facial feature spaces considering the general multi-modal characteristic of the face space. Each component SVM has a simpler boundary than that of a single SVM for the whole face space. The most appropriate component SVM is selected by a gating mechanism based on clustering. The classification by utilizing one of the multiple SVMs guarantees good generalization performance and speeds up face detection. The proposed classifier is finally implemented to work in real-time by cascading a boosting based face detector.

  • Capacity Bound of MIMO Systems with MPSK Modulation and Superimposed Pilots

    Yifei ZHAO  Ming ZHAO  Jing WANG  Yong REN  

     
    PAPER-MIMO System

      Vol:
    E88-A No:10
      Page(s):
    2937-2944

    The enormous capacity potential of multiple-input multiple-output (MIMO) is based on some unrealistic assumptions, such as the complete channel state information (CCSI) at the receiver and Gaussian distributed data. In this paper, in frequency-flat Rayleigh fading environment, we investigate the ergodic capacity of MIMO systems with M-ary phase-shift keying (MPSK) modulation and superimposed pilots for channel estimation. With linear minimum mean square error (LMMSE) channel estimation, the optimal pilots design is presented. For the mathematical tractability, we also derive an easy-computing closed-form lower bound of the channel capacity. Furthermore, the optimal power allocation between the data and pilots is investigated by numerical optimization. It is shown that more power should be devoted to the data in low SNR environments and to the pilots in high SNR environments.

  • Blind Separation and Deconvolution for Convolutive Mixture of Speech Combining SIMO-Model-Based ICA and Multichannel Inverse Filtering

    Hiroshi SARUWATARI  Hiroaki YAMAJO  Tomoya TAKATANI  Tsuyoki NISHIKAWA  Kiyohiro SHIKANO  

     
    PAPER-Engineering Acoustics

      Vol:
    E88-A No:9
      Page(s):
    2387-2400

    We propose a new two-stage blind separation and deconvolution strategy for multiple-input multiple-output (MIMO)-FIR systems driven by colored sound sources, in which single-input multiple-output (SIMO)-model-based ICA (SIMO-ICA) and blind multichannel inverse filtering are combined. SIMO-ICA can separate the mixed signals, not into monaural source signals but into SIMO-model-based signals from independent sources as they are at the microphones. After the separation by the SIMO-ICA, a blind deconvolution technique for the SIMO model can be applied even when each source signal is temporally correlated and the mixing system has a nonminimum phase property. The simulation results reveal that the proposed algorithm can successfully achieve separation and deconvolution of a convolutive mixture of speech, and outperforms a number of conventional ICA-based BSD methods.

  • Double Directional Ultra Wideband Channel Characterization in a Line-of-Sight Home Environment

    Katsuyuki HANEDA  Jun-ichi TAKADA  Takehiko KOBAYASHI  

     
    PAPER-Propagation

      Vol:
    E88-A No:9
      Page(s):
    2264-2271

    This paper introduces the concept of measuring double directional channels in ultra wideband (UWB) systems. Antenna-independent channel data were derived by doing the measurements in a wooden Japanese house. The data were useful for investigating the impact of UWB antennas and analyzing waveform distortion. Up to 100 ray paths were extracted using the SAGE algorithm and they were regarded as being dominant. The paths were then identified in a real environment, in which clusterization analyses were done using the directional information on both sides of the radio link. Propagating power was found to be concentrated around the specular directions of reflection and diffraction. This led to the observation that the spatio-temporal characteristics of extracted paths greatly reflected the structure and size of the environment. The power in the clusters indicated that the estimated 100 paths contained 73% of the total received power, while the rest existed as diffuse scattering, i.e., the accumulation of weaker paths. The practical limits of path extraction with SAGE were also discussed. Finally, we derived the scattering loss and intra-cluster properties for each reflection order, which were crucial for channel reconstrucion based on the deterministic approach.

  • Petri Nets with Simple Circuits

    Hsu-Chun YEN  Lien-Po YU  

     
    PAPER-Fundamentals of Software and Theory of Programs

      Vol:
    E88-D No:9
      Page(s):
    2113-2125

    We study the complexity of the reachability problem for a new subclass of Petri nets called simple-circuit Petri nets, which properly contains several well known subclasses such as conflict-free, BPP, normal Petri nets and more. A new decomposition approach is applied to developing an integer linear programming formulation for characterizing the reachability sets of such Petri nets. Consequently, the reachability problem is shown to be NP-complete. The model checking problem for some temporal logics is also investigated for simple-circuit Petri nets.

581-600hit(945hit)