The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] MPO(945hit)

461-480hit(945hit)

  • Frequency-Domain QR-Decomposed and Equalized MLD for Single-Carrier MIMO Systems over Multipath Fading Channels

    Tetsuhiko MIYATANI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:6
      Page(s):
    2058-2062

    This letter describes a new QR-decomposition maximum likelihood detector that is combined with frequency-domain equalization for single-carrier transmission based multiple-input multiple-output systems. By utilizing the equalized substreams to adjust the frequency selectivity in corresponding substreams in subsequent stages, the packet error rate performances of the proposed detector is superior to that of the minimum mean squared error receiver by a factor of the receive antenna diversity gain.

  • Fast Convergence Blind Source Separation Using Frequency Subband Interpolation by Null Beamforming

    Keiichi OSAKO  Yoshimitsu MORI  Yu TAKAHASHI  Hiroshi SARUWATARI  Kiyohiro SHIKANO  

     
    LETTER

      Vol:
    E91-A No:6
      Page(s):
    1357-1361

    We propose a new algorithm for the blind source separation (BSS) approach in which independent component analysis (ICA) and frequency subband beamforming interpolation are combined. The slow convergence of the optimization of the separation filters is a problem in ICA. Our approach to resolving this problem is based on the relationship between ICA and null beamforming (NBF). The proposed method consists of the following three parts: (I) a frequency subband selector part for learning ICA, (II) a frequency domain ICA part with direction-of-arrivals (DOA) estimation of sound sources, and (III) an interpolation part in which null beamforming constructed with the estimated DOA is used. The results of the signal separation experiments under a reverberant condition reveal that the convergence speed is superior to that of the conventional ICA-based BSS methods.

  • A Simple Adaptive Algorithm for Principle Component and Independent Component Analysis

    Hyun-Chool SHIN  Hyoung-Nam KIM  Woo-Jin SONG  

     
    LETTER-Digital Signal Processing

      Vol:
    E91-A No:5
      Page(s):
    1265-1267

    In this letter we propose a simple adaptive algorithm which solves the unit-norm constrained optimization problem. Instead of conventional parameter norm based normalization, the proposed algorithm incorporates single parameter normalization which is computationally much simpler. The simulation results illustrate that the proposed algorithm performs as good as conventional ones while being computationally simpler.

  • Studies on Modification of Channel Material and Gate Recess Structures in Metamorphic HEMT for Improvement of Breakdown and RF Characteristics

    Seok Gyu CHOI  Young Hyun BAEK  Jung Hun OH  Min HAN  Seok Ho BANG  Jin-Koo RHEE  

     
    PAPER

      Vol:
    E91-C No:5
      Page(s):
    683-687

    In this study, we have performed both the channel modification of the conventional MHEMT (Metamorphic High Electron Mobility Transistor) and the variation of gate recess width to improve the breakdown and RF characteristics. The modified channel consists of the InxGa1-xAs and the InP layers. Since InP has lower impact ionization coefficient than In0.53Ga0.47As, we have adopted the InP-composite channel in the modified MHEMT. Also, the gate recess width is both functions of breakdown and RF characteristic of a HEMT structure. Therefore, we have studied the breakdown and RF characteristic for various gate recess widths in MHEMT. We have compared breakdown characteristic of the InP-composite channel with that of conventional MHEMT. It is shown that on and off state breakdown voltages of the InP-composite channel MHEMT were increased by about 20 and 27%, respectively, compared with the conventional structure. Also, breakdown voltage of the InP-composite channel MHEMT was increased with increasing gate recess width. The fT was increased with decreasing the gate recess width, whereas fmax was increased with increasing the gate recess width. Also, we extracted small-signal parameters. It was shown that Gd of the InP-composite channel MHEMT is decreased about by 30% compared with the conventional MHEMT. Therefore, the suppression of the impact ionization in the InP-composite channel increases the breakdown voltage and decreases the output conductance.

  • Slow-Wave Effect of Electronically-Controlled Composite Right/Left-Handed (CRLH) Transmission Line

    Sungjoon LIM  

     
    LETTER-Antennas and Propagation

      Vol:
    E91-B No:5
      Page(s):
    1665-1668

    A dispersion diagram is useful in interpreting the characteristics of a periodic structure. In particular, the fast-wave region, where the wave is radiating, and the slow-wave region, where the wave is guided, can be determined from the dispersion diagram. An electronically-controlled composite right/left-handed (CRLH) transmission line (TL) was previously proposed and utilized as a leaky-wave (LW) antenna operating in the fast-wave region. However, since a guided-wave application operates in the slow-wave region, it is meaningful to study slow-wave effects of the proposed TL. In this paper, the dispersion diagram is used to investigate the slow-wave factor (SWF), which is necessary to understand the fast/slow-wave operations. Furthermore, the frequency characteristics are measured to find the cut-off frequencies in the LH and RH regions. Based on experimental results, it is observed at a fixed frequency, 2.6-GHz, that the phase of a proposed 6-cell structure can be changed by up to 280 in the LH slow-wave region.

  • Approximating the Best Linear Unbiased Estimator of Non-Gaussian Signals with Gaussian Noise

    Masashi SUGIYAMA  Motoaki KAWANABE  Gilles BLANCHARD  Klaus-Robert MULLER  

     
    LETTER-Pattern Recognition

      Vol:
    E91-D No:5
      Page(s):
    1577-1580

    Obtaining the best linear unbiased estimator (BLUE) of noisy signals is a traditional but powerful approach to noise reduction. Explicitly computing the BLUE usually requires the prior knowledge of the noise covariance matrix and the subspace to which the true signal belongs. However, such prior knowledge is often unavailable in reality, which prevents us from applying the BLUE to real-world problems. To cope with this problem, we give a practical procedure for approximating the BLUE without such prior knowledge. Our additional assumption is that the true signal follows a non-Gaussian distribution while the noise is Gaussian.

  • Efficient Transmit Power Allocation with Partial Feedback for Closed-Loop SQRD Based V-BLAST Systems

    Hoiyoon JUNG  Jongsub CHA  Hyuckjae LEE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:4
      Page(s):
    1219-1222

    This letter proposes an efficient transmit power allocation using partial channel information feedback for the closed-loop sorted QR decomposition (SQRD) based V-BLAST systems. For the feedback information, the positive real-valued diagonal elements of R are forwarded to the transmitter. With the proposed transmit power allocation that is numerically derived by the Lagrange optimization method, the bit error rate performance of the system can be remarkably improved compare to the conventional open-loop SQRD based V-BLAST systems without increasing the receiver complexity.

  • MIMO-OFDM MAP Receiver with Spatial-Temporal Filters Employing Decision-Directed Recursive Eigenvalue Decomposition Parameter Estimation

    Fan LISHENG  Kazuhiko FUKAWA  Hiroshi SUZUKI  Satoshi SUYAMA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:4
      Page(s):
    1112-1121

    This paper proposes a new parameter estimation method for the MIMO-OFDM MAP receiver with spatial-temporal filters. The proposed method employs eigenvalue decomposition (EVD) so as to attain precise estimates especially under interference-limited conditions in MIMO-OFDM mobile communications. Recursive EVD is introduced to reduce the computational complexity compared to the nonrecursive EVD. The spatial-temporal prewhitening is placed prior to FFT because this arrangement is superior to that of conventional prewhitening posterior to FFT in accuracy of the parameter estimation. In order to improve tracking capability to fast fading, the proposed scheme applies a decision-directed algorithm to the parameter estimation by using log-likelihood ratios of coded bits. Computer simulations demonstrate that the proposed scheme can track fast fading and reduce the complexity to 18 percents of the conventional one, and that the spatial-temporal filtering prior to FFT outperforms the conventional one posterior to FFT.

  • Improving Automatic Text Classification by Integrated Feature Analysis

    Lazaro S.P. BUSAGALA  Wataru OHYAMA  Tetsushi WAKABAYASHI  Fumitaka KIMURA  

     
    PAPER-Pattern Recognition

      Vol:
    E91-D No:4
      Page(s):
    1101-1109

    Feature transformation in automatic text classification (ATC) can lead to better classification performance. Furthermore dimensionality reduction is important in ATC. Hence, feature transformation and dimensionality reduction are performed to obtain lower computational costs with improved classification performance. However, feature transformation and dimension reduction techniques have been conventionally considered in isolation. In such cases classification performance can be lower than when integrated. Therefore, we propose an integrated feature analysis approach which improves the classification performance at lower dimensionality. Moreover, we propose a multiple feature integration technique which also improves classification effectiveness.

  • Characterization of Two-Stage Composite Right- and Left-Handed Transmission Lines

    Shun NAKAGAWA  Koichi NARAHARA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E91-C No:4
      Page(s):
    631-637

    The characteristics of two-stage composite right- and left-handed (CRLH) transmission lines are discussed. The dispersion relationship of both balanced and unbalanced two-stage CRLH lines is described, together with numerical calculations that demonstrate their potential.

  • An Ultra-Low-Voltage Ultra-Low-Power Weak Inversion Composite MOS Transistor: Concept and Applications

    Luis H.C. FERREIRA  Tales C. PIMENTA  Robson L. MORENO  

     
    LETTER-Electronic Circuits

      Vol:
    E91-C No:4
      Page(s):
    662-665

    This work presents an ultra-low-voltage ultra-low-power weak inversion composite MOS transistor. The steady state power consumption and the linear swing signal of the composite transistor are comparable to a single transistor, whereas presenting very high output impedance. This work also presents two interesting applications for the composite transistor; a 1:1 current mirror and an extremely low power temperature sensor, a thermistor. Both implementations are verified in a standard 0.35-µm TSMC CMOS process. The current mirror presents high output impedance, comparable to the cascode configuration, which is highly desirable to improve gain and PSRR of amplifiers circuits, and mirroring relation in current mirrors.

  • Recalling Temporal Sequences of Patterns Using Neurons with Hysteretic Property

    Johan SVEHOLM  Yoshihiro HAYAKAWA  Koji NAKAJIMA  

     
    PAPER

      Vol:
    E91-A No:4
      Page(s):
    943-950

    Further development of a network based on the Inverse Function Delayed (ID) model which can recall temporal sequences of patterns, is proposed. Additional advantage is taken of the negative resistance region of the ID model and its hysteretic properties by widening the negative resistance region and letting the output of the ID neuron be almost instant. Calling this neuron limit ID neuron, a model with limit ID neurons connected pairwise with conventional neurons enlarges the storage capacity and increases it even further by using a weightmatrix that is calculated to guarantee the storage after transforming the sequence of patterns into a linear separation problem. The network's tolerance, or the model's ability to recall a sequence, starting in a pattern with initial distortion is also investigated and by choosing a suitable value for the output delay of the conventional neuron, the distortion is gradually reduced and finally vanishes.

  • Motion-Compensated Frame Interpolation for Intra-Mode Blocks

    Sang-Heon LEE  Hyuk-Jae LEE  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E91-D No:4
      Page(s):
    1117-1126

    Motion-compensated frame interpolation (MCFI) is widely used to smoothly display low frame rate video sequences by synthesizing and inserting new frames between existing frames. The temporal shift interpolation technique (TSIT) is popular for frame interpolation of video sequences that are encoded by a block-based video coding standard such as MPEG-4 or H.264/AVC. TSIT assumes the existence of a motion vector (MV) and may not result in high-quality interpolation for intra-mode blocks that do not have MVs. This paper proposes a new frame interpolation algorithm mainly designed for intra-mode blocks. In order to improve the accuracy of pixel interpolation, the new algorithm proposes sub-pixel interpolation and the reuse of MVs for their refinement. In addition, the new algorithm employs two different interpolation modes for inter-mode blocks and intra-mode blocks, respectively. The use of the two modes reduces ghost artifacts but potentially increases blocking effects between the blocks interpolated by different modes. To reduce blocking effects, the proposed algorithm searches the boundary of an object and interpolates all blocks in the object in the same mode. Simulation results show that the proposed algorithm improves PSNR by an average of 0.71 dB compared with the TSIT with MV refinement and also significantly improves the subjective quality of pictures by reducing ghost artifacts.

  • Joint Receive Antenna Selection for Multi-User MIMO Systems with Vector Precoding

    Wei MIAO  Yunzhou LI  Shidong ZHOU  Jing WANG  Xibin XU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:4
      Page(s):
    1176-1179

    Vector precoding is a nonlinear broadcast precoding scheme in the downlink of multi-user MIMO systems which outperforms linear precoding and THP (Tomlinson-Harashima Precoding). This letter discusses the problem of joint receive antenna selection in the multi-user MIMO downlink with vector precoding. Based on random matrix analysis, we derive a simple heuristic selection criterion using singular value decomposition (SVD) and carry out an exhaustive search to determine for each user which receive antenna should be used. Simulation results reveal that receive antenna selection using our proposed criterion obtains the same diversity order as the optimal selection criterion.

  • Resource and Performance Evaluations of Fixed Point QRD-RLS Systolic Array through FPGA Implementation

    Yoshiaki YOKOYAMA  Minseok KIM  Hiroyuki ARAI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:4
      Page(s):
    1068-1075

    At present, when using space-time processing techniques with multiple antennas for mobile radio communication, real-time weight adaptation is necessary. Due to the progress of integrated circuit technology, dedicated processor implementation with ASIC or FPGA can be employed to implement various wireless applications. This paper presents a resource and performance evaluation of the QRD-RLS systolic array processor based on fixed-point CORDIC algorithm with FPGA. In this paper, to save hardware resources, we propose the shared architecture of a complex CORDIC processor. The required precision of internal calculation, the circuit area for the number of antenna elements and wordlength, and the processing speed will be evaluated. The resource estimation provides a possible processor configuration with a current FPGA on the market. Computer simulations assuming a fading channel will show a fast convergence property with a finite number of training symbols. The proposed architecture has also been implemented and its operation was verified by beamforming evaluation through a radio propagation experiment.

  • A Robust and Non-invasive Fetal Electrocardiogram Extraction Algorithm in a Semi-Blind Way

    Yalan YE  Zhi-Lin ZHANG  Jia CHEN  

     
    LETTER-Neural Networks and Bioengineering

      Vol:
    E91-A No:3
      Page(s):
    916-920

    Fetal electrocardiogram (FECG) extraction is of vital importance in biomedical signal processing. A promising approach is blind source extraction (BSE) emerging from the neural network fields, which is generally implemented in a semi-blind way. In this paper, we propose a robust extraction algorithm that can extract the clear FECG as the first extracted signal. The algorithm exploits the fact that the FECG signal's kurtosis value lies in a specific range, while the kurtosis values of other unwanted signals do not belong to this range. Moreover, the algorithm is very robust to outliers and its robustness is theoretically analyzed and is confirmed by simulation. In addition, the algorithm can work well in some adverse situations when the kurtosis values of some source signals are very close to each other. The above reasons mean that the algorithm is an appealing method which obtains an accurate and reliable FECG.

  • Recognizing Reverberant Speech Based on Amplitude and Frequency Modulation

    Yotaro KUBO  Shigeki OKAWA  Akira KUREMATSU  Katsuhiko SHIRAI  

     
    PAPER-ASR under Reverberant Conditions

      Vol:
    E91-D No:3
      Page(s):
    448-456

    We have attempted to recognize reverberant speech using a novel speech recognition system that depends on not only the spectral envelope and amplitude modulation but also frequency modulation. Most of the features used by modern speech recognition systems, such as MFCC, PLP, and TRAPS, are derived from the energy envelopes of narrowband signals by discarding the information in the carrier signals. However, some experiments show that apart from the spectral/time envelope and its modulation, the information on the zero-crossing points of the carrier signals also plays a significant role in human speech recognition. In realistic environments, a feature that depends on the limited properties of the signal may easily be corrupted. In order to utilize an automatic speech recognizer in an unknown environment, using the information obtained from other signal properties and combining them is important to minimize the effects of the environment. In this paper, we propose a method to analyze carrier signals that are discarded in most of the speech recognition systems. Our system consists of two nonlinear discriminant analyzers that use multilayer perceptrons. One of the nonlinear discriminant analyzers is HATS, which can capture the amplitude modulation of narrowband signals efficiently. The other nonlinear discriminant analyzer is a pseudo-instantaneous frequency analyzer proposed in this paper. This analyzer can capture the frequency modulation of narrowband signals efficiently. The combination of these two analyzers is performed by the method based on the entropy of the feature introduced by Okawa et al. In this paper, in Sect. 2, we first introduce pseudo-instantaneous frequencies to capture a property of the carrier signal. The previous AM analysis method are described in Sect. 3. The proposed system is described in Sect. 4. The experimental setup is presented in Sect. 5, and the results are discussed in Sect. 6. We evaluate the performance of the proposed method by continuous digit recognition of reverberant speech. The proposed system exhibits considerable improvement with regard to the MFCC feature extraction system.

  • Robust Speech Recognition by Model Adaptation and Normalization Using Pre-Observed Noise

    Satoshi KOBASHIKAWA  Satoshi TAKAHASHI  

     
    PAPER-Noisy Speech Recognition

      Vol:
    E91-D No:3
      Page(s):
    422-429

    Users require speech recognition systems that offer rapid response and high accuracy concurrently. Speech recognition accuracy is degraded by additive noise, imposed by ambient noise, and convolutional noise, created by space transfer characteristics, especially in distant talking situations. Against each type of noise, existing model adaptation techniques achieve robustness by using HMM-composition and CMN (cepstral mean normalization). Since they need an additive noise sample as well as a user speech sample to generate the models required, they can not achieve rapid response, though it may be possible to catch just the additive noise in a previous step. In the previous step, the technique proposed herein uses just the additive noise to generate an adapted and normalized model against both types of noise. When the user's speech sample is captured, only online-CMN need be performed to start the recognition processing, so the technique offers rapid response. In addition, to cover the unpredictable S/N values possible in real applications, the technique creates several S/N HMMs. Simulations using artificial speech data show that the proposed technique increased the character correct rate by 11.62% compared to CMN.

  • Noise Suppression Based on Multi-Model Compositions Using Multi-Pass Search with Multi-Label N-gram Models

    Takatoshi JITSUHIRO  Tomoji TORIYAMA  Kiyoshi KOGURE  

     
    PAPER-Noisy Speech Recognition

      Vol:
    E91-D No:3
      Page(s):
    402-410

    We propose a noise suppression method based on multi-model compositions and multi-pass search. In real environments, input speech for speech recognition includes many kinds of noise signals. To obtain good recognized candidates, suppressing many kinds of noise signals at once and finding target speech is important. Before noise suppression, to find speech and noise label sequences, we introduce multi-pass search with acoustic models including many kinds of noise models and their compositions, their n-gram models, and their lexicon. Noise suppression is frame-synchronously performed using the multiple models selected by recognized label sequences with time alignments. We evaluated this method using the E-Nightingale task, which contains voice memoranda spoken by nurses during actual work at hospitals. The proposed method obtained higher performance than the conventional method.

  • Facial Expression Recognition by Supervised Independent Component Analysis Using MAP Estimation

    Fan CHEN  Kazunori KOTANI  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E91-D No:2
      Page(s):
    341-350

    Permutation ambiguity of the classical Independent Component Analysis (ICA) may cause problems in feature extraction for pattern classification. Especially when only a small subset of components is derived from data, these components may not be most distinctive for classification, because ICA is an unsupervised method. We include a selective prior for de-mixing coefficients into the classical ICA to alleviate the problem. Since the prior is constructed upon the classification information from the training data, we refer to the proposed ICA model with a selective prior as a supervised ICA (sICA). We formulated the learning rule for sICA by taking a Maximum a Posteriori (MAP) scheme and further derived a fixed point algorithm for learning the de-mixing matrix. We investigate the performance of sICA in facial expression recognition from the aspects of both correct rate of recognition and robustness even with few independent components.

461-480hit(945hit)