The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] OBS(147hit)

1-20hit(147hit)

  • Effects of Electromagnet Interference on Speed and Position Estimations of Sensorless SPMSM Open Access

    Yuanhe XUE  Wei YAN  Xuan LIU  Mengxia ZHOU  Yang ZHAO  Hao MA  

     
    PAPER-Electromechanical Devices and Components

      Pubricized:
    2023/11/10
      Vol:
    E107-C No:5
      Page(s):
    124-131

    Model-based sensorless control of permanent magnet synchronous motor (PMSM) is promising for high-speed operation to estimate motor state, which is the speed and the position of the rotor, via electric signals of the stator, beside the inevitable fact that estimation accuracy is degraded by electromagnet interference (EMI) from switching devices of the converter. In this paper, the simulation system based on Luenberger observer and phase-locked loop (PLL) has been established, analyzing impacts of EMI on motor state estimations theoretically, exploring influences of EMI with different cutoff frequency, rated speeds, frequencies and amplitudes. The results show that Luenberger observer and PLL have strong immunity, which enable PMSM can still operate stably even under certain degrees of interference. EMI produces sideband harmonics that enlarge pulsation errors of speed and position estimations. Additionally, estimation errors are positively correlated with cutoff frequency of low-pass filter and the amplitude of EMI, and negatively correlated with rated speed of the motor and the frequency of EMI.  When the frequency is too high, its effects on motor state estimations are negligible. This work contributes to the comprehensive understanding of how EMI affects motor state estimations, which further enhances practical application of sensorless PMSM.

  • Optimal Movement for SLAM by Hopping Rover

    Shuntaro TAKEKUMA  Shun-ichi AZUMA  Ryo ARIIZUMI  Toru ASAI  

     
    PAPER

      Pubricized:
    2022/10/24
      Vol:
    E106-A No:5
      Page(s):
    715-720

    A hopping rover is a robot that can move in low gravity planets by the characteristic motion called the hopping motion. For its autonomous explorations, the so-called SLAM (Simultaneous Localization and Mapping) is a basic function. SLAM is the combination of estimating the position of a robot and creating a map of an unknown environment. Most conventional methods of SLAM are based on odometry to estimate the position of the robot. However, in the case of the hopping rover, the error of odometry becomes considerably large because its hopping motion involves unpredictable bounce on the rough ground on an unexplored planet. Motivated by the above discussion, this paper addresses a problem of finding an optimal movement of the hopping rover for the estimation performance of the SLAM. For the problem, we first set the model of the SLAM system for the hopping rover. The problem is formulated as minimizing the expectation of the estimation error at a pre-specified time with respect to the sequence of control inputs. We show that the optimal input sequence tends to force the final position to be not at the landmark but in front of the landmark, and furthermore, the optimal input sequence is constant on the time interval for optimization.

  • Design of Full State Observer Based on Data-Driven Dual System Representation

    Ryosuke ADACHI  Yuji WAKASA  

     
    PAPER

      Pubricized:
    2022/10/24
      Vol:
    E106-A No:5
      Page(s):
    736-743

    This paper addresses an observer-design method only using data. Usually, the observer requires a mathematical model of a system for state prediction and observer gain calculation. As an alternative to the model-based prediction, the proposed predictor calculates the states using a linear combination of the given data. To design the observer gain, the data which represent dual systems are derived from the data which represent the original system. Linear matrix inequalities that depend on data of the dual system provides the observer gains.

  • Learning Support System That Encourages Self-Directed Knowledge Discovery

    Kosuke MATSUDA  Kazuhisa SETA  Yuki HAYASHI  

     
    PAPER

      Pubricized:
    2022/10/06
      Vol:
    E106-D No:2
      Page(s):
    110-120

    Self-directed learning in an appropriately designed environment can help learners retain knowledge tied to experience and motivate them to learn more. For teachers, however, it is difficult to design an environment to give to learners and to give feedback that reflects respect for their independent efforts, while for learners, it is difficult to set learning objectives on their own and to construct knowledge correctly based on their own efforts. In this research, we developed a learning support system that provides a mechanism for constructing an observational learning environment using virtual space and that encourages self-directed knowledge discovery. We confirmed that this system contributes to a learner's structural understanding and its retention and to a greater desire to learn at a level comparable to that of concept map creation, another active learning method.

  • Communication Quality Estimation Observer: An Approach for Integrated Communication Quality Estimation and Control for Digital-Twin-Assisted Cyber-Physical Systems Open Access

    Ryogo KUBO  

     
    INVITED PAPER

      Pubricized:
    2022/04/14
      Vol:
    E105-B No:10
      Page(s):
    1139-1153

    Cyber-physical systems (CPSs) assisted by digital twins (DTs) integrate sensing-actuation loops over communication networks in various infrastructure services and applications. This study overviews the concept, methodology, and applications of the integrated communication quality estimation and control for the DT-assisted CPSs from both communications and control perspectives. The DT-assisted CPSs can be considered as networked control systems (NCSs) with virtual dynamic models of physical entities. A communication quality estimation observer (CQEO), which is an extended version of the communication disturbance observer (CDOB) utilized for time-delay compensation in NCSs, is proposed to estimate the integrated effects of the quality of services (QoS) and cyberattacks on the NCS applications. A path diversity technique with the CQEO is also proposed to achieve reliable NCSs. The proposed technique is applied to two kinds of NCSs: remote motor control and haptic communication systems. Moreover, results of the simulation on a haptic communication system show the effectiveness of the proposed approach. In the end, future research directions of the CQEO-based scheme are presented.

  • Obstacle Detection for Unmanned Surface Vehicles by Fusion Refinement Network

    Weina ZHOU  Xinxin HUANG  Xiaoyang ZENG  

     
    PAPER-Information Network

      Pubricized:
    2022/05/12
      Vol:
    E105-D No:8
      Page(s):
    1393-1400

    As a kind of marine vehicles, Unmanned Surface Vehicles (USV) are widely used in military and civilian fields because of their low cost, good concealment, strong mobility and high speed. High-precision detection of obstacles plays an important role in USV autonomous navigation, which ensures its subsequent path planning. In order to further improve obstacle detection performance, we propose an encoder-decoder architecture named Fusion Refinement Network (FRN). The encoder part with a deeper network structure enables it to extract more rich visual features. In particular, a dilated convolution layer is used in the encoder for obtaining a large range of obstacle features in complex marine environment. The decoder part achieves the multiple path feature fusion. Attention Refinement Modules (ARM) are added to optimize features, and a learnable fusion algorithm called Feature Fusion Module (FFM) is used to fuse visual information. Experimental validation results on three different datasets with real marine images show that FRN is superior to state-of-the-art semantic segmentation networks in performance evaluation. And the MIoU and MPA of the FRN can peak at 97.01% and 98.37% respectively. Moreover, FRN could maintain a high accuracy with only 27.67M parameters, which is much smaller than the latest obstacle detection network (WaSR) for USV.

  • Specification and Verification of Multitask Real-Time Systems Using the OTS/CafeOBJ Method

    Masaki NAKAMURA  Shuki HIGASHI  Kazutoshi SAKAKIBARA  Kazuhiro OGATA  

     
    PAPER

      Pubricized:
    2021/09/24
      Vol:
    E105-A No:5
      Page(s):
    823-832

    Because processes run concurrently in multitask systems, the size of the state space grows exponentially. Therefore, it is not straightforward to formally verify that such systems enjoy desired properties. Real-time constrains make the formal verification more challenging. In this paper, we propose the following to address the challenge: (1) a way to model multitask real-time systems as observational transition systems (OTSs), a kind of state transition systems, (2) a way to describe their specifications in CafeOBJ, an algebraic specification language, and (3) a way to verify that such systems enjoy desired properties based on such formal specifications by writing proof scores, proof plans, in CafeOBJ. As a case study, we model Fischer's protocol, a well-known real-time mutual exclusion protocol, as an OTS, describe its specification in CafeOBJ, and verify that the protocol enjoys the mutual exclusion property when an arbitrary number of processes participates in the protocol*.

  • Reliable Decentralized Supervisory Control of Discrete Event Systems with Single-Level Inference

    Shigemasa TAKAI  Sho YOSHIDA  

     
    PAPER

      Pubricized:
    2021/10/08
      Vol:
    E105-A No:5
      Page(s):
    799-807

    We consider a reliable decentralized supervisory control problem for discrete event systems in the inference-based framework. This problem requires us to synthesize local supervisors such that the controlled system achieves the specification and is nonblocking, even if local control decisions of some local supervisors are not available for making the global control decision. In the case of single-level inference, we introduce a notion of reliable 1-inference-observability and show that reliable 1-inference-observability together with controllability and Lm(G)-closedness is a necessary and sufficient condition for the existence of a solution to the reliable decentralized supervisory control problem.

  • Distributed Observer Design on Sensor Networks with Random Communication

    Yuh YAMASHITA  Haruka SUMITA  Ryosuke ADACHI  Koichi KOBAYASHI  

     
    PAPER-Systems and Control

      Pubricized:
    2020/09/09
      Vol:
    E104-A No:3
      Page(s):
    613-621

    This paper proposes a distributed observer on a sensor network, where communication on the network is randomly performed. This work is a natural extension of Kalman consensus filter approach to the cases involving random communication. In both bidirectional and unidirectional communication cases, gain conditions that guarantee improvement of estimation error convergence compared to the case with no communication are obtained. The obtained conditions are more practical than those of previous studies and give appropriate cooperative gains for a given communication probability. The effectiveness of the proposed method is confirmed by computer simulations.

  • Deterministic Supervisors for Bisimilarity Control of Partially Observed Nondeterministic Discrete Event Systems with Deterministic Specifications

    Kohei SHIMATANI  Shigemasa TAKAI  

     
    PAPER

      Vol:
    E104-A No:2
      Page(s):
    438-446

    We consider the bisimilarity control problem for partially observed nondeterministic discrete event systems with deterministic specifications. This problem requires us to synthesize a supervisor that achieves bisimulation equivalence of the supervised system and the deterministic specification under partial observation. We present necessary and sufficient conditions for the existence of such a deterministic supervisor and show that these conditions can be verified polynomially.

  • Designing a Framework for Data Quality Validation of Meteorological Data System Open Access

    Wen-Lung TSAI  Yung-Chun CHAN  

     
    PAPER

      Pubricized:
    2019/01/22
      Vol:
    E102-D No:4
      Page(s):
    800-809

    In the current era of data science, data quality has a significant and critical impact on business operations. This is no different for the meteorological data encountered in the field of meteorology. However, the conventional methods of meteorological data quality control mainly focus on error detection and null-value detection; that is, they only consider the results of the data output but ignore the quality problems that may also arise in the workflow. To rectify this issue, this paper proposes the Total Meteorological Data Quality (TMDQ) framework based on the Total Quality Management (TQM) perspective, especially considering the systematic nature of data warehousing and process focus needs. In practical applications, this paper uses the proposed framework as the basis for the development of a system to help meteorological observers improve and maintain the quality of meteorological data in a timely and efficient manner. To verify the feasibility of the proposed framework and demonstrate its capabilities and usage, it was implemented in the Tamsui Meteorological Observatory (TMO) in Taiwan. The four quality dimension indicators established through the proposed framework will help meteorological observers grasp the various characteristics of meteorological data from different aspects. The application and research limitations of the proposed framework are discussed and possible directions for future research are presented.

  • In situ Observation of Capturing BTB Molecules from Aqueous Solutions with Hydrophobic DNA Nano-Film

    Naoki MATSUDA  Hirotaka OKABE  Ayako OMURA  Miki NAKANO  Koji MIYAKE  Toshihiko NAGAMURA  Hideki KAWAI  

     
    BRIEF PAPER

      Vol:
    E102-C No:2
      Page(s):
    203-206

    Hydrophobic DNA (H-DNA) nano-film was formed on a thin glass plate of 50μm thick working as a slab optical waveguide. Bromothymol blue (BTB) molecules were immobilized from aqueous solution with direct contacting to the H-DNA nano-film for 20 minutes. From changes in absorption spectra observed with slab optical wave guide (SOWG) during automated solution exchange (SE) processes for 100 times, it was found that about 95% of bromothymol blue (BTB) molecules was immobilized in the H-DNA nano-film with keeping their functionality of color change responsible to pH change in the solution.

  • Delay-Compensated Maximum-Likelihood-Estimation Method and Its Application for Quadrotor UAVs

    Ryosuke ADACHI  Yuh YAMASHITA  

     
    PAPER-Systems and Control

      Vol:
    E101-A No:4
      Page(s):
    678-684

    This study proposes a maximum-likelihood-estimation method for a quadrotor UAV given the existence of sensor delays. The state equation of the UAV is nonlinear, and thus, we propose an approximated method that consists of two steps. The first step estimates the past state based on the delayed output through an extended Kalman filter. The second step involves calculating an estimate of the present state by simulating the original system from the past to the present. It is proven that the proposed method provides an approximated maximum-likelihood-estimation. The effectiveness of the estimator is verified by performing experiments.

  • Supervisory Control of Partially Observed Quantitative Discrete Event Systems for Fixed-Initial-Credit Energy Problem

    Sasinee PRUEKPRASERT  Toshimitsu USHIO  

     
    PAPER-Formal techniques

      Pubricized:
    2017/03/07
      Vol:
    E100-D No:6
      Page(s):
    1166-1171

    This paper studies the supervisory control of partially observed quantitative discrete event systems (DESs) under the fixed-initial-credit energy objective. A quantitative DES is modeled by a weighted automaton whose event set is partitioned into a controllable event set and an uncontrollable event set. Partial observation is modeled by a mapping from each event and state of the DES to the corresponding masked event and masked state that are observed by a supervisor. The supervisor controls the DES by disabling or enabling any controllable event for the current state of the DES, based on the observed sequences of masked states and masked events. We model the control process as a two-player game played between the supervisor and the DES. The DES aims to execute the events so that its energy level drops below zero, while the supervisor aims to maintain the energy level above zero. We show that the proposed problem is reducible to finding a winning strategy in a turn-based reachability game.

  • Analysis of Vehicle Information Sharing Performance of an Intersection Collision Warning System

    Yusuke TAKATORI  Hideya TAKEO  

     
    PAPER

      Vol:
    E100-A No:2
      Page(s):
    457-465

    In this paper, the performance of a vehicle information sharing (VIS) system for an intersection collision warning system (ICWS) is analyzed. The on-board unit (OBU) of the ICWS sharing obstacle detection sensor information (ICWS-ODSI) is mounted on a vehicle, and it obtains information about the surrounding vehicles, such as their position and velocity, by its in-vehicle obstacle detection sensors. These information are shared with other vehicles via an intervehicle communication network. In this analysis, a T-junction is assumed as the road environment for the theoretical analysis of the VIS performance in terms of the mean of entire vehicle information acquiring probability (MEVIAP). The MEVIAP on OBU penetration rate indicated that the ICWS-ODSI is superior to the conventional VIS system that only shares its own individual driving information via an intervehicle communication network. Furthermore, the MEVIAP on the sensing range of the ICWS-ODSI is analyzed, and it was found that the ISO15623 sensor used for the forward vehicle collision warning system becomes a candidate for the in-vehicle detection sensor of ICWS-ODSI.

  • Novel Beam-Scanning Center-Fed Imaging Reflector Antenna with Elliptical Aperture for Wide Area Observation

    Michio TAKIKAWA  Yoshio INASAWA  Hiroaki MIYASHITA  Izuru NAITO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E99-C No:9
      Page(s):
    1031-1038

    We investigate a phased array-fed dual reflector antenna applying one-dimensional beam-scanning of the center-fed type, using an elliptical aperture to provide wide area observation. The distinguishing feature of this antenna is its elliptical aperture shape, in which the aperture diameter differs between the forward satellite direction and the cross-section orthogonal to it. The shape in the plane of the forward satellite direction, which does not have a beam-scanning function, is a ring-focus Cassegrain antenna, and the shape in the plane orthogonal to that, which does have a beam-scanning function, is an imaging reflector antenna. This paper describes issues which arose during design of the elliptical aperture shape and how they were solved, and presents design results using elliptical aperture dimensions of 1600 mm × 600 mm, in which the beam width differs by more than two times in the orthogonal cross-section. The effectiveness of the antenna was verified by fabricating a prototype antenna based on the design results. Measurement results confirmed that an aperture efficiency of 50% or more could be achieved, and that a different beam width was obtained in the orthogonal plane in accordance with design values.

  • A Practical Extended Harmonic Disturbance Observer Design for Robust Current Control of Speed Sensorless DC Motor Drives

    In Hyuk KIM  Young Ik SON  

     
    LETTER-Systems and Control

      Vol:
    E99-A No:6
      Page(s):
    1243-1246

    An extended harmonic disturbance observer is designed for speed (or position) sensorless current control of DC motor subject to a biased sinusoidal disturbance and parameter uncertainties. The proposed method does not require the information on the mechanical part of the motor equation. Theoretical analysis via the singular perturbation theory is performed to verify that the feedforward compensation using the estimation can improve the robust transient performance of the closed-loop system. A stability condition is derived against parameter uncertainties. Comparative experimental results validate the robustness of the proposed method against the uncertainties.

  • Synthesis of Output Feedback Controllers for Bisimilarity Control of Transition Systems

    Nam TUNG VU  Shigemasa TAKAI  

     
    PAPER

      Vol:
    E99-A No:2
      Page(s):
    483-490

    We consider a bisimilarity control problem for transition systems. For this control problem, a necessary and sufficient condition for its solvability and a method for synthesizing a state feedback controller have been presented in the literature. However, the state of the system to be controlled is not necessarily observable. In this paper, we synthesize an observer-based output feedback controller for the bisimilarity control problem under a certain condition, and show that this output feedback controller is a solution to the control problem.

  • A Practical Finite-Time Convergent Observer against Input Disturbance and Measurement Noise

    In Hyuk KIM  Young Ik SON  

     
    LETTER-Systems and Control

      Vol:
    E98-A No:9
      Page(s):
    1973-1976

    A simple robust finite-time convergent observer is presented in the presence of unknown input disturbance and measurement noise. In order to achieve the robust estimation and ensure the finite-time convergence, the proposed observer is constructed by using a multiple integral observer scheme in a hybrid system framework. Comparative computer simulations and laboratory experiments have been performed to test the effectiveness of the proposed observer.

  • Rejection of the Position Dependent Disturbance Torque of Motor System with Slowly Varying Parameters and Time Delays

    Daesung JUNG  Youngjun YOO  Sangchul WON  

     
    PAPER-Systems and Control

      Vol:
    E98-A No:7
      Page(s):
    1494-1503

    This paper proposes an updating state dependent disturbance observer (USDDOB) to reject position dependent disturbances when parameters vary slowly, and input and output are time-delayed. To reject the effects of resultant slowly-varying position dependent disturbances, the USDDOB uses the control method of the state dependent disturbance observer (SDDOB) and time-invariance approximation. The USDDOB and a main proportional integral (PI) controller constitute a robust controller. Simulations and experiments using a 1-degree-of-freedom (1-DOF) tilted planar robot show the effectiveness of the proposed method.

1-20hit(147hit)