The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] OFET(7hit)

1-7hit
  • AuGe-Alloy Source and Drain Formation by the Lift-Off Process for the Scaling of Bottom-Contact Type Pentacene-Based OFETs

    Shun-ichiro OHMI  Mizuha HIROKI  Yasutaka MAEDA  

     
    PAPER

      Vol:
    E102-C No:2
      Page(s):
    138-142

    The AuGe-alloy source and drain (S/D) formed on SiO2/Si(100) by the lithography process was investigated for the scaling of the organic field-effect transistors (OFETs) with bottom-contact geometry. The S/D was fabricated by the lift-off process utilizing the resist of OFPR. The OFETs with minimum channel length of 2.4 µm was successfully fabricated by the lift-off process. The fabrication yield of Au S/D was 57%, while it was increased to 93% and 100% in case of the Au-1%Ge and Au-7.4%Ge S/D, respectively. Although the mobility of the OFETs with Au-7.4%Ge S/D was decreased to 1.1×10-3 cm2/(Vs), it was able to be increased to 5.5×10-2 cm2/(Vs) by the surface cleaning utilizing H2SO4/H2O2 mixture solution (SPM) and post metallization annealing (PMA) after lift-off process, which was higher than that of OFET with Au S/D.

  • Electron Injection of N-type Pentacene-Based OFET with Nitrogen-Doped LaB6 Bottom-Contact Electrodes

    Yasutaka MAEDA  Mizuha HIROKI  Shun-ichiro OHMI  

     
    PAPER

      Vol:
    E101-C No:5
      Page(s):
    323-327

    In this study, the effect of nitrogen-doped (N-doped) LaB6 bottom-contact electrodes and interfacial layer (IL) on n-type pentacene-based organic field-effect transistor (OFET) was investigated. The scaled OFET was fabricated by using photolithography for bottom-contact electrodes. A 20-nm-thick N-doped LaB6 bottom-contact electrodes were formed on SiO2/n+-Si(100) substrate by RF sputtering followed by the surface treatment with sulfuric acid and hydrogen peroxide mixture (SPM) followed by diluted hydrofluoric acid (DHF; 1% HF) at room temperature (RT). Then, a 1.2-nm-thick N-doped LaB6 IL was deposited at RT. Finally, a 10-nm-thick pentacene film was deposited at 100°C followed by the Al back-gate electrode formation by using thermal evaporation. The current of electron injection was observed in the air due to the effect of surface treatment and N-doped LaB6 IL.

  • Effect of Nitrogen-Doped LaB6 Interfacial Layer on Device Characteristics of Pentacene-Based OFET

    Yasutaka MAEDA  Shun-ichiro OHMI  Tetsuya GOTO  Tadahiro OHMI  

     
    PAPER

      Vol:
    E100-C No:5
      Page(s):
    463-467

    In this paper, the effect of a nitrogen-doped (N-doped) LaB6 interfacial layer (IL) on p-type pentacene-based OFET was investigated. The pentacene-based OFET with top-contact/back-gate geometry was fabricated. A 2-nm-thick N-doped LaB6 interfacial layer deposited on an 8-nm-thick SiO2 gate insulator. A 10-nm-thick pentacene film was deposited by thermal evaporation at 100°C followed by Au contact and Al back gate electrodes formation. The fabricated OFET showed normally- off characteristics and a steep subthreshold swing (SS) of 84 mV/dec. from ID-VG and ID-VD characteristics. Furthermore, the aging characteristics of 6 months after the fabrication were investigated and it was found that VTH and SS were stable when the N-doped LaB6 IL was introduced at the interface between SiO2 gate insulator and pentacene.

  • Effect of Background Pressure on the Performance of Organic Field Effect Transistors with Copper Electrodes

    Cuong Manh TRAN  Tatsuya MURAKAMI  Heisuke SAKAI  Hideyuki MURATA  

     
    BRIEF PAPER

      Vol:
    E100-C No:2
      Page(s):
    122-125

    We demonstrate the effect of vacuum pressure on the mobility (µ) and the threshold voltage (Vth) of organic field effect transistor (OFETs) using copper as source-drain electrodes. OFETs with copper electrodes deposited at high background pressure are better in electric characteristics compared with traditional devices fabricated under low pressure using gold electrodes.

  • High Quality Pentacene Film Formation on N-Doped LaB6 Donor Layer

    Yasutaka MAEDA  Shun-ichiro OHMI  Tetsuya GOTO  Tadahiro OHMI  

     
    PAPER

      Vol:
    E99-C No:5
      Page(s):
    535-540

    In this research, we have investigated the deposition condition of pentacene film on nitrogen doped (N-doped) LaB6 donor layer for larger grain growth at the channel region for bottom-contact type pentacene-based organic field-effect transistors (OFETs) to improve the device characteristics. Source and drain bottom-contacts of Al were patterned and 2nm-thick N-doped LaB6 donor layer was deposited on the SiO2/Si(100) back-gate structure. The dendritic grain growth of pentacene larger than 10µm without lamellar grain growth was demonstrated when the deposition temperature and rate were 100°C and 0.5nm/min, respectively. Furthermore, it was found that the dendritic grain growth was realized at the boundary region of bottom-contact as well as channel region.

  • Improvement of On/Off Ratio in Organic Field-effect Transistor Having Thin Molybdenum Trioxide Layer

    Masahiro MINAGAWA  Hidetsugu TAMURA  Ryo SAKIKAWA  Itsuki IKARASHI  Akira BABA  Kazunari SHINBO  Keizo KATO  Futao KANEKO  

     
    PAPER

      Vol:
    E98-C No:2
      Page(s):
    98-103

    We fabricated organic field-effect transistors (OFETs) having a thin layer of molybdenum trioxide (MoO$_3$), a Lewis acid, and evaluated their electrical characteristics. The insertion of a thin MoO$_3$ layer reduces the on/off ratio but improves the apparent mobility of the charge carriers. To identify the dominant mechanism responsible for this effect, we characterized devices having a 69-nm-thick pentacene layer with a 1-nm-thick MoO$_3$ layer either between the gold source and the drain electrodes or only directly under these electrodes. The former device exhibited a low on/off ratio, whereas the latter device exhibited an on/off ratio comparable to those of conventional pentacene OFETs without a thin MoO$_3$ layer, suggesting that the formation of charge-transfer (CT) complexes immediately above the conduction channel is the critical mechanism. CT complexes at the pentacene/MoO$_3$ interface immediately above the conduction channel contribute to the formation of an effective channel for off-currents as well as drain currents. Moreover, we also attempted to improve the on/off ratio by using a cloth to rub the surface of a thin MoO$_3$ layer immediately above the conduction channel to create what we believe to be a profile with abrupt changes in height in the direction of the drain current conduction in OFETs. Consequently, it was found that such a rubbed MoO$_3$ layer had a surface with a scratched pattern, and the on/off ratio of the OFET was improved, indicating that controlling the CT complex formation by patterning a MoO$_3$ layer can reduce the off-current in OFETs having a pentacene/MoO$_3$ active layer.

  • Growth Mechanism of Pentacene on HfON Gate Insulator and Its Effect on Electrical Properties of Organic Field-Effect Transistors

    Min LIAO  Hiroshi ISHIWARA  Shun-ichiro OHMI  

     
    PAPER

      Vol:
    E95-C No:5
      Page(s):
    885-890

    Pentacene-based organic field-effect transistors (OFETs) with SiO2 and HfON gate insulators have been fabricated, and the effect of gate insulator on the electrical properties of pentacene-based OFETs and the microstructures of pentacene films were investigated. It was found that the grain size for pentacene film deposited on HfON gate insulator is larger than that for pentacene film deposited on SiO2 gate insulator. Due to the larger grain size, pentacene-based OFET with HfON gate insulator shows better electrical properties compared to pentacene-based OFET with SiO2 gate insulator. Meanwhile, low-temperature (such as 140) fabricated pentacene-based OFET with HfON gate insulator was also investigated. The OFET fabricated at 140 shows a small subthreshold swing of 0.14 V/decade, a large on/off current ratio of 4 104, a threshold voltage of -0.65 V, and a hole mobility of 0.33 cm2/Vs at an operating voltage of -2 V.