The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] PA(8249hit)

1441-1460hit(8249hit)

  • LP Guided PSO Algorithm for Office Lighting Control

    Wa SI  Xun PAN  Harutoshi OGAI  Katsumi HIRAI  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2016/04/13
      Vol:
    E99-D No:7
      Page(s):
    1753-1761

    In most existing centralized lighting control systems, the lighting control problem (LCP) is reformulated as a constrained minimization problem and solved by linear programming (LP). However, in real-world applications, LCP is actually discrete and non-linear, which means that more accurate algorithm may be applied to achieve improvements in energy saving. In this paper, particle swarm optimization (PSO) is successfully applied for office lighting control and a linear programming guided particle swarm optimization (LPPSO) algorithm is developed to achieve considerable energy saving while satisfying users' lighting preference. Simulations in DIALux office models (one with small number of lamps and one with large number of lamps) are made and analyzed using the proposed control algorithms. Comparison with other widely used methods including LP shows that LPPSO can always achieve higher energy saving than other lighting control methods.

  • Power Consumption Signature: Characterizing an SSD

    Balgeun YOO  Seongjin LEE  Youjip WON  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2016/03/30
      Vol:
    E99-D No:7
      Page(s):
    1796-1809

    SSDs consist of non-mechanical components (host interface, control core, DRAM, flash memory, etc.) whose integrated behavior is not well-known. This makes an SSD seem like a black-box to users. We analyzed power consumption of four SSDs with standard I/O operations. We find the following: (a) the power consumption of SSDs is not significantly lower than that of HDDs, (b) all SSDs we tested had similar power consumption patterns which, we assume, is a result of their internal parallelism. SSDs have a parallel architecture that connects flash memories by channel or by way. This parallel architecture improves performance of SSDs if the information is known to the file system. This paper proposes three SSD characterization algorithms to infer the characteristics of SSD, such as internal parallelism, I/O unit, and page allocation scheme, by measuring its power consumption with various sized workloads. These algorithms are applied to four real SSDs to find: (i) the internal parallelism to decide whether to perform I/Os in a concurrent or an interleaved manner, (ii) the I/O unit size that determines the maximum size that can be assigned to a flash memory, and (iii) a page allocation method to map the logical address of write operations, which are requested from the host to the physical address of flash memory. We developed a data sampling method to provide consistency in collecting power consumption patterns of each SSD. When we applied three algorithms to four real SSDs, we found flash memory configurations, I/O unit sizes, and page allocation schemes. We show that the performance of SSD can be improved by aligning the record size of file system with I/O unit of SSD, which we found by using our algorithm. We found that Q Pro has I/O unit of 32 KB, and by aligning the file system record size to 32 KB, the performance increased by 201% and energy consumption decreased by 85%, which compared to the record size of 4 KB.

  • Effect of Transparent Waves from Building Walls on Path Loss Characteristics at Blind Intersection in Urban Area for 700MHz Band Inter-Vehicle Communications

    Suguru IMAI  Kenji TAGUCHI  Tatsuya KASHIWA  

     
    BRIEF PAPER

      Vol:
    E99-C No:7
      Page(s):
    813-816

    In the development of inter-vehicle communication systems for a prevention of car crashes, it is important to know path loss characteristics at blind intersections in urban area. Thus field experiments and numerical simulations have been performed. By the way, transparent waves from building walls are not considered in many cases. The reason why is that it is the worst case in terms of the path loss at blind intersection surrounded by buildings in urban area. However, it would be important to know the effect of transparent wave on the path loss in actual environments. On the other hand, path loss models have been proposed to estimate easily the path loss in urban environment. In these models, the effect of transparent wave is not clear. In this paper, the effect of transparent wave from building walls on path loss characteristics at blind intersection in urban area is investigated by using the FDTD method. Additionally, the relationship between transparent wave and path loss models is also investigated.

  • Survivable Grouped Routing Optical Networks with Dedicated Path Protection

    Hiroshi HASEGAWA  Yojiro MORI  Ken-ichi SATO  

     
    PAPER-Network

      Vol:
    E99-B No:7
      Page(s):
    1435-1444

    A novel resilient coarse granularity optical routing network architecture that adopts finely granular protection and finely granular add/drop is presented. The routing scheme defines optical pipes such that multiple optical paths can be carried by each pipe and can be dropped or added at any node on the route of a pipe. The routing scheme also makes it possible to enhance frequency utilization within pipes, by denser path packing in the frequency domain, as we recently verified. We develop a static network design algorithm that simultaneously realizes the independence of working and backup paths and pipe location optimization to efficiently carry these paths. The design algorithm first sequentially accommodates optical paths into the network, then tries to eliminate sparsely utilized fibers and iteratively optimizes frequency slot/wavelength assignment in each coarse granular pipe so as to limit the impairment caused by dropping the optical paths adjacent in the frequency domain. Numerical experiments elucidate that the number of fibers in a network can be reduced by up to 20% for 400Gbps channels without any modification in hardware.

  • Bi-Partitioning Based Multiplexer Network for Field-Data Extractors

    Koki ITO  Kazushi KAWAMURA  Yutaka TAMIYA  Masao YANAGISAWA  Nozomu TOGAWA  

     
    LETTER

      Vol:
    E99-A No:7
      Page(s):
    1410-1414

    An (M,N)-field-data extractor reads out any consecutive N bytes from an M-byte register by connecting its input/output using a multiplexer (MUX) network. It is used in packet analysis and/or stream data processing for video/audio data. In this letter, we propose an efficient MUX network for an (M,N)-field-data extractor. By bi-partitioning a simple MUX network into an upper one and a lower one, we can theoretically reduce the number of required MUXs without increasing the MUX network depth. Experimental results show that we can reduce the gate count by up to 92% compared to a naive approach.

  • Performance of APD-Based Amplify-and-Forward Relaying FSO Systems over Atmospheric Turbulence Channels

    Thanh V. PHAM  Anh T. PHAM  

     
    PAPER-Communication Theory and Signals

      Vol:
    E99-A No:7
      Page(s):
    1455-1464

    This paper proposes and theoretically analyzes the performance of amplify-and-forward (AF) relaying free-space optical (FSO) systems using avalanche photodiode (APD) over atmospheric turbulence channels. APD is used at each relay node and at the destination for optical signal conversion and amplification. Both serial and parallel relaying configurations are considered and the subcarrier binary phase-shift keying (SC-BPSK) signaling is employed. Closed-form expressions for the outage probability and the bit-error rate (BER) of the proposed system are analytically derived, taking into account the accumulating amplification noise as well as the receiver noise at the relay nodes and at the destination. Monte-Carlo simulations are used to validate the theoretical analysis, and an excellent agreement between the analytical and simulation results is confirmed.

  • PAC-k: A Parallel Aho-Corasick String Matching Approach on Graphic Processing Units Using Non-Overlapped Threads

    ThienLuan HO  Seung-Rohk OH  HyunJin KIM  

     
    PAPER-Network Management/Operation

      Vol:
    E99-B No:7
      Page(s):
    1523-1531

    A parallel Aho-Corasick (AC) approach, named PAC-k, is proposed for string matching in deep packet inspection (DPI). The proposed approach adopts graphic processing units (GPUs) to perform the string matching in parallel for high throughput. In parallel string matching, the boundary detection problem happens when a pattern is matched across chunks. The PAC-k approach solves the boundary detection problem because the number of characters to be scanned by a thread can reach the longest pattern length. An input string is divided into multiple sub-chunks with k characters. By adopting the new starting position in each sub-chunk for the failure transition, the required number of threads is reduced by a factor of k. Therefore, the overhead of terminating and reassigning threads is also decreased. In order to avoid the unnecessary overlapped scanning with multiple threads, a checking procedure is proposed that decides whether a new starting position is in the sub-chunk. In the experiments with target patterns from Snort and realistic input strings from DEFCON, throughputs are enhanced greatly compared to those of previous AC-based string matching approaches.

  • Novel Design of Dual-Band Reconfigurable Dipole Antenna Using Lumped and Distributed Elements

    Shoichi ONODERA  Ryo ISHIKAWA  Akira SAITOU  Kazuhiko HONJO  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:7
      Page(s):
    1550-1557

    A frequency-reconfigurable dipole antenna, whose dual resonant frequencies are independently controlled, is introduced. The antenna's conductor consists of radiating conductors, lumped and distributed elements, and varactors. To design the antenna, current distribution, input impedance, and radiation power including higher-order modes, are analyzed for a narrow-angle sectorial antenna embedded with passive elements. To derive the formulae used, radiation power is analyzed in two ways: using Chu's equivalent circuit and the multipole expansion method. Numerical estimations of electrically small antennas show that dual-band antennas are feasible. The dual resonant frequencies are controlled with the embedded series and shunt inductors. A dual-band antenna is fabricated, and measured input impedances agree well with the calculated data. With the configuration, an electrically small 2.5-/5-GHz dual-band reconfig-urable antenna is designed and fabricated, where the reactance values for the series and shunt inductors are controlled with varactors, each connected in series to the inductors. Varying the voltages applied to the varactors varies the measured upper and lower resonant frequencies between 2.6 and 2.9GHz and between 5.1 and 5.3GHz, where the other resonant frequency is kept almost identical. Measured radiation patterns on the H-plane are almost omni-directional for both bands.

  • Simulational Approach to Realize a Triplexer Based on Bandpass Filters Using Wideband Resonators

    Kosei TANII  Koji WADA  

     
    PAPER

      Vol:
    E99-C No:7
      Page(s):
    751-760

    A triplexer is presented by using bandpass filters (BPFs) which consist of two-stage of wideband resonator and additional open-circuited stubs. The resonator is firstly proposed by using a coupled-line and an inductive element loaded transmission line. This resonator produces the wide passband by a dual-mode resonance, high attenuation level at stopbands, and the steepness at the edge of the passband due to the attenuation poles. In order to understand the behavior of the resonator, the conditions for resonances and attenuation poles are especially solved and their current densities are analyzed by an electromagnetic simulation. Secondly, three types of wideband BPFs are constituted and finally a wideband triplexer is composed by using these BPFs. The basic characteristics of the proposed BPFs and the matching methodology enable to realize the triplexer whose desired passbands are around 3.1-5.1 GHz, 5.85-7.85 GHz, and 8.6-10.6 GHz with high isolation performance at the other passbands. The proposed triplexer is predominance in the flexible bandwidth or wide operating frequency range. All the BPFs and the triplexer are implemented on a planar printed circuit board assuming the use of the microstrip line structure.

  • A Compact Millimeter-Wave Dual-Band Bandpass Filter Using Substrate-Integrated Waveguide (SIW) Dual-Mode Cavities

    Kaida DONG  Jingyan MO  Yuhong HE  Zhewang MA  Xuexia YANG  

     
    PAPER

      Vol:
    E99-C No:7
      Page(s):
    761-765

    A compact millimeter-wave three-pole dual-band bandpass filter (BPF) by using substrate-integrated waveguide (SIW) dual-mode cavities is developed in this paper. The proposed filter consists of three SIW dual-mode cavities, in which the TE201 and TE102 modes are used to form two passbands. The center frequencies of the two passbands can be readily changed by varying the lengths and/or widths of the SIW cavities. Meanwhile three transmission zeros are produced with appropriate design of the input and output of the SIW cavities, which increase significantly the isolation between the two passbands and their roll-off rate of attenuations. The dual-band BPF filter is designed, fabricated and measured. The measured center frequencies of the two passbands are 26.75GHz and 31.55GHz, respectively. The 3dB-passbands are 26.35-27.15GHz (3%) and 31.29-31.81GHz (1.6%), respectively, with maximum insertion loss of 2.64dB and 4.2dB, respectively, and return loss larger than 12dB in both passbands. A good agreement between the simulated and measured filter characteristics is obtained.

  • Analysis of Two- and Three-Dimensional Plasmonic Waveguide Band-Pass Filters Using the TRC-FDTD Method

    Jun SHIBAYAMA  Yusuke WADA  Junji YAMAUCHI  Hisamatsu NAKANO  

     
    BRIEF PAPER

      Vol:
    E99-C No:7
      Page(s):
    817-819

    Two plasmonic band-bass filters are analyzed: one is a grating-type filter and the other is a slit-type filter. The former shows a band-pass characteristic with a high transmission for a two-dimensional structure, while the latter exhibits a high transmission even for a three-dimensional structure with a thin metal layer.

  • A Heuristic Expansion Framework for Mapping Instances to Linked Open Data

    Natthawut KERTKEIDKACHORN  Ryutaro ICHISE  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2016/04/05
      Vol:
    E99-D No:7
      Page(s):
    1786-1795

    Mapping instances to the Linked Open Data (LOD) cloud plays an important role for enriching information of instances, since the LOD cloud contains abundant amounts of interlinked instances describing the instances. Consequently, many techniques have been introduced for mapping instances to a LOD data set; however, most of them merely focus on tackling with the problem of heterogeneity. Unfortunately, the problem of the large number of LOD data sets has yet to be addressed. Owing to the number of LOD data sets, mapping an instance to a LOD data set is not sufficient because an identical instance might not exist in that data set. In this article, we therefore introduce a heuristic expansion based framework for mapping instances to LOD data sets. The key idea of the framework is to gradually expand the search space from one data set to another data set in order to discover identical instances. In experiments, the framework could successfully map instances to the LOD data sets by increasing the coverage to 90.36%. Experimental results also indicate that the heuristic function in the framework could efficiently limit the expansion space to a reasonable space. Based upon the limited expansion space, the framework could effectively reduce the number of candidate pairs to 9.73% of the baseline without affecting any performances.

  • Hybrid MIC/CPU Parallel Implementation of MoM on MIC Cluster for Electromagnetic Problems Open Access

    Yan CHEN  Yu ZHANG  Guanghui ZHANG  Xunwang ZHAO  ShaoHua WU  Qing ZHANG  XiaoPeng YANG  

     
    INVITED PAPER

      Vol:
    E99-C No:7
      Page(s):
    735-743

    In this paper, a Many Integrated Core Architecture (MIC) accelerated parallel method of moment (MoM) algorithm is proposed to solve electromagnetic problems in practical applications, where MIC means a kind of coprocessor or accelerator in computer systems which is used to accelerate the computation performed by Central Processing Unit (CPU). Three critical points are introduced in this paper in detail. The first one is the design of the parallel framework, which ensures that the algorithm can run on distributed memory platform with multiple nodes. The hybrid Message Passing Interface (MPI) and Open Multi-Processing (OpenMP) programming model is designed to achieve the purposes. The second one is the out-of-core algorithm, which greatly breaks the restriction of MIC memory. The third one is the pipeline algorithm which overlaps the data movement with MIC computation. The pipeline algorithm successfully hides the communication and thus greatly enhances the performance of hybrid MIC/CPU MoM. Numerical result indicates that the proposed algorithm has good parallel efficiency and scalability, and twice faster performance when compared with the corresponding CPU algorithm.

  • Free Space Optic and mmWave Communications: Technologies, Challenges and Applications Open Access

    Tawfik ISMAIL  Erich LEITGEB  Thomas PLANK  

     
    INVITED PAPER

      Vol:
    E99-B No:6
      Page(s):
    1243-1254

    Increasing demand in data-traffic has been addressed over the last few years. It is expected that the data-traffic will present the significant part of the total backbone traffic. Accordingly, much more transmission systems will be required to support this growth. A free space optic (FSO) communication is the greatest promising technology supporting high-speed and high-capacity transport networks. It can support multi Gbit/s for few kilometers transmission distance. The benefits of an FSO system are widespread, low cost, flexibility, immunity to electromagnetic field, fast deployment, security, etc. However, it suffers from some drawbacks, which limit the deployment of FSO links. The main drawback in FSO is the degradation in the signal quality because of atmospheric channel impairments. In addition, it is high sensitive for illumination noise coming from external sources such as sun and lighting systems. It is more benefit that FSO and mmWave are operating as a complementary solution that is known as hybrid FSO/mmWave links. Whereas the mmWave is susceptible to heavy rain conditions and oxygen absorption, while fog has no particular effect. This paper will help to better understand the FSO and mmWave technologies and applications operating under various atmospheric conditions. Furthermore, in order to improve the system performance and availability, several modulation schemes will be discussed. In addition to, the hybrid FSO/mmWave with different diversity combining techniques are presented.

  • A New High-Density 10T CMOS Gate-Array Base Cell for Two-Port SRAM Applications

    Nobutaro SHIBATA  Yoshinori GOTOH  Takako ISHIHARA  

     
    PAPER-Integrated Electronics

      Vol:
    E99-C No:6
      Page(s):
    717-726

    Two-port SRAMs are frequently installed in gate-array VLSIs to implement smart functions. This paper presents a new high-density 10T CMOS base cell for gate-array-based two-port SRAM applications. Using the single base cell alone, we can implement a two-port memory cell whose bitline contacts are shared with the memory cell adjacent to one of two dedicated sides, resulting in greatly reduced parasitic capacitance in bitlines. To throw light on the total performance derived from the base cell, a plain two-port SRAM macro was designed and fabricated with a 0.35-µm low cost, logic process. Each of two 10-bit power-saved address decoders was formed with 36% fewer base cells by employing complex gates and a subdecoder. The new sense amplifier with a complementary sensing scheme had a fine sensitivity of 35 mVpp, and so we successfully reduced the required read bitline signal from 250 to 70 mVpp. With the macro with 1024 memory cells per bitline, the address access time under typical conditions of a 2.5-V power supply and 25°C was 4.0 ns (equal to that obtained with full-custom style design) and the power consumption at 200-MHz simultaneous operations of two ports was 6.7 mW for an I/O-data width of 1 bit.

  • A 10-bit 20-MS/s Asynchronous SAR ADC with Meta-Stability Detector Using Replica Comparators

    Sang-Min PARK  Yeon-Ho JEONG  Yu-Jeong HWANG  Pil-Ho LEE  Yeong-Woong KIM  Jisu SON  Han-Yeol LEE  Young-Chan JANG  

     
    BRIEF PAPER

      Vol:
    E99-C No:6
      Page(s):
    651-654

    A 10-bit 20-MS/s asynchronous SAR ADC with a meta-stability detector using replica comparators is proposed. The proposed SAR ADC with the area of 0.093mm2 is implemented using a 130-nm CMOS process with a 1.2-V supply. The measured peak ENOBs for the full rail-to-rail differential input signal is 9.6bits.

  • Refined RC4 Key Correlations of Internal States in WPA

    Ryoma ITO  Atsuko MIYAJI  

     
    PAPER

      Vol:
    E99-A No:6
      Page(s):
    1132-1144

    WPA is the security protocol for IEEE 802.11 wireless networks standardized as a substitute for WEP in 2003, and uses RC4 stream cipher for encryption. It improved a 16-byte RC4 key generation procedure, which is known as TKIP, from that in WEP. One of the remarkable features in TKIP is that the first 3-byte RC4 key is derived from the public parameter IV, and an analysis using this feature has been reported by Sen Gupta et al. at FSE 2014. They focused on correlations between the keystream bytes and the known RC4 key bytes in WPA, which are called key correlations or linear correlations, and improved the existing plaintext recovery attack using their discovered correlations. No study, however, has focused on such correlations including the internal states in WPA. In this paper, we investigated new linear correlations including unknown internal state variables in both generic RC4 and WPA. From the result, we can successfully discover various new linear correlations, and prove some correlations theoretically.

  • Parameterized Algorithms for Disjoint Matchings in Weighted Graphs with Applications

    Zhi-Zhong CHEN  Tatsuie TSUKIJI  Hiroki YAMADA  

     
    PAPER

      Vol:
    E99-A No:6
      Page(s):
    1050-1058

    It is a well-known and useful problem to find a matching in a given graph G whose size is at most a given parameter k and whose weight is maximized (over all matchings of size at most k in G). In this paper, we consider two natural extensions of this problem. One is to find t disjoint matchings in a given graph G whose total size is at most a given parameter k and whose total weight is maximized, where t is a (small) constant integer. Previously, only the special case where t=2 was known to be fixed-parameter tractable. In this paper, we show that the problem is fixed-parameter tractable for any constant t. When t=2, the time complexity of the new algorithm is significantly better than that of the previously known algorithm. The other is to find a set of vertex-disjoint paths each of length 1 or 2 in a given graph whose total length is at most a given parameter k and whose total weight is maximized. As interesting applications, we further use the algorithms to speed up several known approximation algorithms (for related NP-hard problems) whose approximation ratio depends on a fixed parameter 0<ε<1 and whose running time is dominated by the time needed for exactly solving the problems on graphs in which each connected component has at most ε-1 vertices.

  • A Convolution Theorem for Multiple-Valued Logic Polynomials of a Semigroup Type and Their Fast Multiplication

    Hajime MATSUI  

     
    PAPER

      Vol:
    E99-A No:6
      Page(s):
    1025-1033

    In this paper, a convolution theorem which is analogous to the theorem for Fourier transform is shown among a certain type of polynomials. We establish a fast method of the multiplication in a special class of quotient rings of multivariate polynomials over q-element finite field GF(q). The polynomial which we treat is one of expressing forms of the multiple-valued logic function from the product of the semigroups in GF(q) to GF(q). Our results can be applied to the speedup of both software and hardware concerning multiple-valued Boolean logic.

  • Approximation Algorithms for Packing Element-Disjoint Steiner Trees on Bounded Terminal Nodes

    Daiki HOSHIKA  Eiji MIYANO  

     
    PAPER

      Vol:
    E99-A No:6
      Page(s):
    1059-1066

    In this paper we discuss approximation algorithms for the ELEMENT-DISJOINT STEINER TREE PACKING problem (Element-STP for short). For a graph G=(V,E) and a subset of nodes T⊆V, called terminal nodes, a Steiner tree is a connected, acyclic subgraph that contains all the terminal nodes in T. The goal of Element-STP is to find as many element-disjoint Steiner trees as possible. Element-STP is known to be APX-hard even for |T|=3 [1]. It is also known that Element-STP is NP-hard to approximate within a factor of Ω(log |V|) [3] and there is an O(log |V|)-approximation algorithm for Element-STP [2],[4]. In this paper, we provide a $lceil rac{|T|}{2} ceil$-approximation algorithm for Element-STP on graphs with |T| terminal nodes. Furthermore, we show that the approximation ratio of 3 for Element-STP on graphs with five terminal nodes can be improved to 2.

1441-1460hit(8249hit)