The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] PA(8249hit)

1261-1280hit(8249hit)

  • Microblog Retrieval Using Ensemble of Feature Sets through Supervised Feature Selection

    Abu Nowshed CHY  Md Zia ULLAH  Masaki AONO  

     
    PAPER

      Pubricized:
    2017/01/17
      Vol:
    E100-D No:4
      Page(s):
    793-806

    Microblog, especially twitter, has become an integral part of our daily life for searching latest news and events information. Due to the short length characteristics of tweets and frequent use of unconventional abbreviations, content-relevance based search cannot satisfy user's information need. Recent research has shown that considering temporal and contextual aspects in this regard has improved the retrieval performance significantly. In this paper, we focus on microblog retrieval, emphasizing the alleviation of the vocabulary mismatch, and the leverage of the temporal (e.g., recency and burst nature) and contextual characteristics of tweets. To address the temporal and contextual aspect of tweets, we propose new features based on query-tweet time, word embedding, and query-tweet sentiment correlation. We also introduce some popularity features to estimate the importance of a tweet. A three-stage query expansion technique is applied to improve the relevancy of tweets. Moreover, to determine the temporal and sentiment sensitivity of a query, we introduce query type determination techniques. After supervised feature selection, we apply random forest as a feature ranking method to estimate the importance of selected features. Then, we make use of ensemble of learning to rank (L2R) framework to estimate the relevance of query-tweet pair. We conducted experiments on TREC Microblog 2011 and 2012 test collections over the TREC Tweets2011 corpus. Experimental results demonstrate the effectiveness of our method over the baseline and known related works in terms of precision at 30 (P@30), mean average precision (MAP), normalized discounted cumulative gain at 30 (NDCG@30), and R-precision (R-Prec) metrics.

  • Pre-Filter Based on Allpass Filter for Blind MIMO-OFDM Equalization Using CMA Algorithm

    Naoto SASAOKA  James OKELLO  Masatsune ISHIHARA  Kazuki AOYAMA  Yoshio ITOH  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/10/28
      Vol:
    E100-B No:4
      Page(s):
    602-611

    We propose a pre-filtering system for blind equalization in order to separate orthogonal frequency division multiplexing (OFDM) symbols in a multiple-input multiple-output (MIMO) - OFDM system. In a conventional blind MIMO-OFDM equalization without the pre-filtering system, there is a possibility that originally transmitted streams are permutated, resulting in the receiver being unable to retrieve desired signals. We also note that signal permutation is different for each subcarrier. In order to solve this problem, each transmitted stream of the proposed MIMO-OFDM system is pre-filtered by a unique allpass filter. In this paper, the pre-filter is referred to as transmit tagging filter (TT-Filter). At a receiver, an inverse filter of the TT-filter is used to blindly equalize a MIMO channel without permutation problem. Further, in order to overcome the issue of phase ambiguity, this paper introduces blind phase compensation.

  • A Speech Enhancement Method Based on Multi-Task Bayesian Compressive Sensing

    Hanxu YOU  Zhixian MA  Wei LI  Jie ZHU  

     
    PAPER-Speech and Hearing

      Pubricized:
    2016/11/30
      Vol:
    E100-D No:3
      Page(s):
    556-563

    Traditional speech enhancement (SE) algorithms usually have fluctuant performance when they deal with different types of noisy speech signals. In this paper, we propose multi-task Bayesian compressive sensing based speech enhancement (MT-BCS-SE) algorithm to achieve not only comparable performance to but also more stable performance than traditional SE algorithms. MT-BCS-SE algorithm utilizes the dependence information among compressive sensing (CS) measurements and the sparsity of speech signals to perform SE. To obtain sufficient sparsity of speech signals, we adopt overcomplete dictionary to transform speech signals into sparse representations. K-SVD algorithm is employed to learn various overcomplete dictionaries. The influence of the overcomplete dictionary on MT-BCS-SE algorithm is evaluated through large numbers of experiments, so that the most suitable dictionary could be adopted by MT-BCS-SE algorithm for obtaining the best performance. Experiments were conducted on well-known NOIZEUS corpus to evaluate the performance of the proposed algorithm. In these cases of NOIZEUS corpus, MT-BCS-SE is shown that to be competitive or even superior to traditional SE algorithms, such as optimally-modified log-spectral amplitude (OMLSA), multi-band spectral subtraction (SSMul), and minimum mean square error (MMSE), in terms of signal-noise ratio (SNR), speech enhancement gain (SEG) and perceptual evaluation of speech quality (PESQ) and to have better stability than traditional SE algorithms.

  • An Improved Multivariate Wavelet Denoising Method Using Subspace Projection

    Huan HAO  Huali WANG  Naveed ur REHMAN  Liang CHEN  Hui TIAN  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:3
      Page(s):
    769-775

    An improved multivariate wavelet denoising algorithm combined with subspace and principal component analysis is presented in this paper. The key element is deriving an optimal orthogonal matrix that can project the multivariate observation signal to a signal subspace from observation space. Univariate wavelet shrinkage operator is then applied to the projected signals channel-wise resulting in the improvement of the output SNR. Finally, principal component analysis is performed on the denoised signal in the observation space to further improve the denoising performance. Experimental results based on synthesized and real world ECG data verify the effectiveness of the proposed algorithm.

  • A Visibility-Based Lower Bound for Android Unlock Patterns

    Jinwoo LEE  Jae Woo SEO  Kookrae CHO  Pil Joong LEE  Dae Hyun YUM  

     
    LETTER-Information Network

      Pubricized:
    2016/12/01
      Vol:
    E100-D No:3
      Page(s):
    578-581

    The Android pattern unlock is a widely adopted graphical password system that requires a user to draw a secret pattern connecting points arranged in a grid. The theoretical security of pattern unlock can be defined by the number of possible patterns. However, only upper bounds of the number of patterns have been known except for 3×3 and 4×4 grids for which the exact number of patterns was found by brute-force enumeration. In this letter, we present the first lower bound by computing the minimum number of visible points from each point in various subgrids.

  • Autoreducibility and Completeness for Partial Multivalued Functions

    Shuji ISOBE  Eisuke KOIZUMI  

     
    PAPER

      Pubricized:
    2016/12/21
      Vol:
    E100-D No:3
      Page(s):
    422-427

    In this paper, we investigate a relationship between many-one-like autoreducibility and completeness for classes of functions computed by polynomial-time nondeterministic Turing transducers. We prove two results. One is that any many-one complete function for these classes is metric many-one autoreducible. The other is that any strict metric many-one complete function for these classes is strict metric many-one autoreducible.

  • A Linear Time Algorithm for Finding a Minimum Spanning Tree with Non-Terminal Set VNT on Outerplanar Graphs

    Shin-ichi NAKAYAMA  Shigeru MASUYAMA  

     
    PAPER

      Pubricized:
    2016/12/21
      Vol:
    E100-D No:3
      Page(s):
    434-443

    Given a graph G=(V, E), where V and E are vertex and edge sets of G, and a subset VNT of vertices called a non-terminal set, the minimum spanning tree with a non-terminal set VNT, denoted by MSTNT, is a connected and acyclic spanning subgraph of G that contains all vertices of V with the minimum weight where each vertex in a non-terminal set is not a leaf. On general graphs, the problem of finding an MSTNT of G is NP-hard. We show that if G is an outerplanar graph then finding an MSTNT of G is linearly solvable with respect to the number of vertices.

  • Analytical End-to-End PER Performance of Multi-Hop Cooperative Relaying and Its Experimental Verification

    Hidekazu MURATA  Makoto MIYAGOSHI  Yuji OISHI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/10/12
      Vol:
    E100-B No:3
      Page(s):
    449-455

    The end-to-end packet error rate (PER) performance of a multi-hop cooperative relaying system is discussed in this paper. In this system, the end-to-end PER performance improves with the number of hops under certain conditions. The PER performance of multi-hop cooperative networks is analyzed with the state transition technique. The theoretical analysis reveals that the PER performance can be kept almost constant, or even improved, as the number of hops is increased. Computer simulation results agree closely with the analysis results. Moreover, to confirm this performance characteristic in an actual setup, an in-lab experiment using a fading emulator was conducted. The experimental results confirm the theoretical end-to-end PER performance of this system.

  • Signal Reconstruction Algorithm of Finite Rate of Innovation with Matrix Pencil and Principal Component Analysis

    Yujie SHI  Li ZENG  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:3
      Page(s):
    761-768

    In this paper, we study the problem of noise with regard to the perfect reconstruction of non-bandlimited signals, the class of signals having a finite number of degrees of freedom per unit time. The finite rate of innovation (FRI) method provides a means of recovering a non-bandlimited signal through using of appropriate kernels. In the presence of noise, however, the reconstruction function of this scheme may become ill-conditioned. Further, the reduced sampling rates afforded by this scheme can be accompanied by increased error sensitivity. In this paper, to obtain improved noise robustness, we propose the matrix pencil (MP) method for sample signal reconstruction, which is based on principal component analysis (PCA). Through the selection of an adaptive eigenvalue, a non-bandlimited signal can be perfectly reconstructed via a stable solution of the Yule-Walker equation. The proposed method can obtain a high signal-to-noise-ratio (SNR) for the reconstruction results. Herein, the method is applied to certain non-bandlimited signals, such as a stream of Diracs and nonuniform splines. The simulation results demonstrate that the MP and PCA are more effective than the FRI method in suppressing noise. The FRI method can be used in many applications, including those related to bioimaging, radar, and ultrasound imaging.

  • Pattern Synthesis of Sparse Linear Arrays Using Spider Monkey Optimization

    Huaning WU  Yalong YAN  Chao LIU  Jing ZHANG  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2016/10/06
      Vol:
    E100-B No:3
      Page(s):
    426-432

    This paper introduces and uses spider monkey optimization (SMO) for synthesis sparse linear arrays, which are composed of a uniformly spaced core subarray and an extended sparse subarray. The amplitudes of all the elements and the locations of elements in the extended sparse subarray are optimized by the SMO algorithm to reduce the side lobe levels of the whole array, under a set of practical constraints. To show the efficiency of SMO, different examples are presented and solved. Simulation results of the sparse arrays designed by SMO are compared with published results to verify the effectiveness of the SMO method.

  • An Exact Algorithm for Lowest Edge Dominating Set

    Ken IWAIDE  Hiroshi NAGAMOCHI  

     
    PAPER

      Pubricized:
    2016/12/21
      Vol:
    E100-D No:3
      Page(s):
    414-421

    Given an undirected graph G, an edge dominating set is a subset F of edges such that each edge not in F is adjacent to some edge in F, and computing the minimum size of an edge dominating set is known to be NP-hard. Since the size of any edge dominating set is at least half of the maximum size µ(G) of a matching in G, we study the problem of testing whether a given graph G has an edge dominating set of size ⌈µ(G)/2⌉ or not. In this paper, we prove that the problem is NP-complete, whereas we design an O*(2.0801µ(G)/2)-time and polynomial-space algorithm to the problem.

  • Modeling of Field-Plate Effect on Gallium-Nitride-Based High Electron Mobility Transistors for High-Power Applications

    Takeshi MIZOGUCHI  Toshiyuki NAKA  Yuta TANIMOTO  Yasuhiro OKADA  Wataru SAITO  Mitiko MIURA-MATTAUSCH  Hans Jürgen MATTAUSCH  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E100-C No:3
      Page(s):
    321-328

    The major task in compact modeling for high power devices is to predict the switching waveform accurately because it determines the energy loss of circuits. Device capacitance mainly determines the switching characteristics, which makes accurate capacitance modeling inevitable. This paper presents a newly developed compact model HiSIM-GaN [Hiroshima University STARC IGFET Model for Gallium-Nitride-based High Electron Mobility Transistors (GaN-HEMTs)], where the focus is given on the accurate modeling of the field-plate (FP), which is introduced to delocalize the electric-field peak that occurs at the electrode edge. We demonstrate that the proposed model reproduces capacitance measurements of a GaN-HEMT accurately without fitting parameters. Furthermore, the influence of the field plate on the studied circuit performance is analyzed.

  • Two Classes of New Zero Difference Balanced Functions from Difference Balanced Functions and Perfect Ternary Sequences

    Wei SU  

     
    PAPER-Coding Theory

      Vol:
    E100-A No:3
      Page(s):
    839-845

    In this paper, we present two classes of zero difference balanced (ZDB) functions, which are derived by difference balanced functions, and a class of perfect ternary sequences respectively. The proposed functions have parameters not covered in the literature, and can be used to design optimal constant composition codes, and perfect difference systems of sets.

  • Theoretical Analyses on 2-Norm-Based Multiple Kernel Regressors

    Akira TANAKA  Hideyuki IMAI  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E100-A No:3
      Page(s):
    877-887

    The solution of the standard 2-norm-based multiple kernel regression problem and the theoretical limit of the considered model space are discussed in this paper. We prove that 1) The solution of the 2-norm-based multiple kernel regressor constructed by a given training data set does not generally attain the theoretical limit of the considered model space in terms of the generalization errors, even if the training data set is noise-free, 2) The solution of the 2-norm-based multiple kernel regressor is identical to the solution of the single kernel regressor under a noise free setting, in which the adopted single kernel is the sum of the same kernels used in the multiple kernel regressor; and it is also true for a noisy setting with the 2-norm-based regularizer. The first result motivates us to develop a novel framework for the multiple kernel regression problems which yields a better solution close to the theoretical limit, and the second result implies that it is enough to use the single kernel regressors with the sum of given multiple kernels instead of the multiple kernel regressors as long as the 2-norm based criterion is used.

  • Polynomial Time Inductive Inference of Languages of Ordered Term Tree Patterns with Height-Constrained Variables from Positive Data

    Takayoshi SHOUDAI  Kazuhide AIKOH  Yusuke SUZUKI  Satoshi MATSUMOTO  Tetsuhiro MIYAHARA  Tomoyuki UCHIDA  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E100-A No:3
      Page(s):
    785-802

    An efficient means of learning tree-structural features from tree-structured data would enable us to construct effective mining methods for tree-structured data. Here, a pattern representing rich tree-structural features common to tree-structured data and a polynomial time algorithm for learning important tree patterns are necessary for mining knowledge from tree-structured data. As such a tree pattern, we introduce a term tree pattern t such that any edge label of t belongs to a finite alphabet Λ, any internal vertex of t has ordered children and t has a new kind of structured variable, called a height-constrained variable. A height-constrained variable has a pair of integers (i, j) as constraints, and it can be replaced with a tree whose trunk length is at least i and whose height is at most j. This replacement is called height-constrained replacement. A sequence of consecutive height-constrained variables is called a variable-chain. In this paper, we present polynomial time algorithms for solving the membership problem and the minimal language (MINL) problem for term tree patternshaving no variable-chain. The membership problem for term tree patternsis to decide whether or not a given tree can be obtained from a given term tree pattern by applying height-constrained replacements to all height-constrained variables in the term tree pattern. The MINL problem for term tree patternsis to find a term tree pattern t such that the language generated by t is minimal among languages, generated by term tree patterns, which contain all given tree-structured data. Finally, we show that the class, i.e., the set of all term tree patternshaving no variable-chain, is polynomial time inductively inferable from positive data if |Λ| ≥ 2.

  • Band Splitting Permutations for Spatially Coupled LDPC Codes Achieving Asymptotically Optimal Burst Erasure Immunity

    Hiroki MORI  Tadashi WADAYAMA  

     
    PAPER-Coding Theory

      Vol:
    E100-A No:2
      Page(s):
    663-669

    It is well known that spatially coupled (SC) codes with erasure-BP decoding have powerful error correcting capability over memoryless erasure channels. However, the decoding performance of SC-codes significantly degrades when they are used over burst erasure channels. In this paper, we propose band splitting permutations (BSP) suitable for (l,r,L) SC-codes. The BSP splits a diagonal band in a base matrix into multiple bands in order to enhance the span of the stopping sets in the base matrix. As theoretical performance guarantees, lower and upper bounds on the maximal burst correctable length of the permuted (l,r,L) SC-codes are presented. Those bounds indicate that the maximal correctable burst ratio of the permuted SC-codes is given by λmax≃1/k where k=r/l. This implies the asymptotic optimality of the permuted SC-codes in terms of burst erasure correction.

  • A Wideband Printed Elliptical Monopole Antenna for Circular Polarization

    Takafumi FUJIMOTO  Takaya ISHIKUBO  Masaya TAKAMURA  

     
    PAPER

      Vol:
    E100-B No:2
      Page(s):
    203-210

    In this paper, a printed elliptical monopole antenna for wideband circular polarization is proposed. The antenna's structure is asymmetric with regard to the microstrip line. The section of the ground plane that overlaps the elliptical patch is removed. With simulations, the relationship between the antenna's geometrical parameters and the antenna's axial ratio of circularly polarized wave is clarified. The operational principle for wideband circular polarization is explained by the simulated electric current distributions. The simulated and measured bandwidths of the 3dB-axial ratio with a 2-VSWR is approximately 88.4% (2.12GHz-5.47GHz) and 83.6% (2.20GHz-5.36GHz), respectively.

  • Sparse Recovery Using Sparse Sensing Matrix Based Finite Field Optimization in Network Coding

    Ganzorig GANKHUYAG  Eungi HONG  Yoonsik CHOE  

     
    LETTER-Information Network

      Pubricized:
    2016/11/04
      Vol:
    E100-D No:2
      Page(s):
    375-378

    Network coding (NC) is considered a new paradigm for distributed networks. However, NC has an all-or-nothing property. In this paper, we propose a sparse recovery approach using sparse sensing matrix to solve the NC all-or-nothing problem over a finite field. The effectiveness of the proposed approach is evaluated based on a sensor network.

  • Driver Behavior Assessment in Case of Critical Driving Situations

    Oussama DERBEL  René LANDRY, Jr.  

     
    PAPER

      Vol:
    E100-A No:2
      Page(s):
    491-498

    Driver behavior assessment is a hard task since it involves distinctive interconnected factors of different types. Especially in case of insurance applications, a trade-off between application cost and data accuracy remains a challenge. Data uncertainty and noises make smart-phone or low-cost sensor platforms unreliable. In order to deal with such problems, this paper proposes the combination between the Belief and Fuzzy theories with a two-level fusion based architecture. It enables the propagation of information errors from the lower to the higher level of fusion using the belief and/or the plausibility functions at the decision step. The new developed risk models of the Driver and Environment are based on the accident statistics analysis regarding each significant driving risk parameter. The developed Vehicle risk models are based on the longitudinal and lateral accelerations (G-G diagram) and the velocity to qualify the driving behavior in case of critical events (e.g. Zig-Zag scenario). In case of over-speed and/or accident scenario, the risk is evaluated using our new developed Fuzzy Inference System model based on the Equivalent Energy Speed (EES). The proposed approach and risk models are illustrated by two examples of driving scenarios using the CarSim vehicle simulator. Results have shown the validity of the developed risk models and the coherence with the a-priori risk assessment.

  • lq Sparsity Penalized STAP Algorithm with Sidelobe Canceler Architecture for Airborne Radar

    Xiaoxia DAI  Wei XIA  Wenlong HE  

     
    LETTER-Information Theory

      Vol:
    E100-A No:2
      Page(s):
    729-732

    Much attention has recently been paid to sparsity-aware space-time adaptive processing (STAP) algorithms. The idea of sparsity-aware technology is commonly based on the convex l1-norm penalty. However, some works investigate the lq (0 < q < 1) penalty which induces more sparsity owing to its lack of convexity. We herein consider the design of an lq penalized STAP processor with a generalized sidelobe canceler (GSC) architecture. The lq cyclic descent (CD) algorithm is utilized with the least squares (LS) design criterion. It is validated through simulations that the lq penalized STAP processor outperforms the existing l1-based counterparts in both convergence speed and steady-state performance.

1261-1280hit(8249hit)