The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] PA(8249hit)

1461-1480hit(8249hit)

  • Layer-Aware 3D-IC Partitioning for Area-Overhead Reduction Considering the Power of Interconnections and Pads

    Yung-Hao LAI  Yang-Lang CHANG  Jyh-Perng FANG  Lena CHANG  Hirokazu KOBAYASHI  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E99-A No:6
      Page(s):
    1206-1215

    Through-silicon vias (TSV) allow the stacking of dies into multilayer structures, and solve connection problems between neighboring tiers for three-dimensional (3D) integrated circuit (IC) technology. Several studies have investigated the placement and routing in 3D ICs, but not much has focused on circuit partitioning for 3D stacking. However, with the scaling trend of CMOS technology, the influence of the area of I/O pads, power/ground (P/G) pads, and TSVs should not be neglected in 3D partitioning technology. In this paper, we propose an iterative layer-aware partitioning algorithm called EX-iLap, which takes into account the area of I/O pads, P/G pads, and TSVs for area balancing and minimization of inter-tier interconnections in a 3D structure. Minimizing the quantity of TSVs reduces the total silicon die area, which is the main source of recurring costs during fabrication. Furthermore, estimations of the number of TSVs and the total area are somewhat imprecise if P/G TSVs are not taken into account. Therefore, we calculate the power consumption of each cell and estimate the number of P/G TSVs at each layer. Experimental results show that, after considering the power of interconnections and pads, our algorithm can reduce area-overhead by ~39% and area standard deviation by ~69%, while increasing the quantity of TSVs by only 12%, as compared to the algorithm without considering the power of interconnections and pads.

  • Quadratic Compressed Sensing Based SAR Imaging Algorithm for Phase Noise Mitigation

    Xunchao CONG  Guan GUI  Keyu LONG  Jiangbo LIU  Longfei TAN  Xiao LI  Qun WAN  

     
    LETTER-Digital Signal Processing

      Vol:
    E99-A No:6
      Page(s):
    1233-1237

    Synthetic aperture radar (SAR) imagery is significantly deteriorated by the random phase noises which are generated by the frequency jitter of the transmit signal and atmospheric turbulence. In this paper, we recast the SAR imaging problem via the phase-corrupted data as for a special case of quadratic compressed sensing (QCS). Although the quadratic measurement model has potential to mitigate the effects of the phase noises, it also leads to a nonconvex and quartic optimization problem. In order to overcome these challenges and increase reconstruction robustness to the phase noises, we proposed a QCS-based SAR imaging algorithm by greedy local search to exploit the spatial sparsity of scatterers. Our proposed imaging algorithm can not only avoid the process of precise random phase noise estimation but also acquire a sparse representation of the SAR target with high accuracy from the phase-corrupted data. Experiments are conducted by the synthetic scene and the moving and stationary target recognition Sandia laboratories implementation of cylinders (MSTAR SLICY) target. Simulation results are provided to demonstrate the effectiveness and robustness of our proposed SAR imaging algorithm.

  • Input-Output Manifold Learning with State Space Models

    Daisuke TANAKA  Takamitsu MATSUBARA  Kenji SUGIMOTO  

     
    PAPER-Systems and Control

      Vol:
    E99-A No:6
      Page(s):
    1179-1187

    In this paper, the system identification problem from the high-dimensional input and output is considered. If the relationship between the features extracted from the data is represented as a linear time-invariant dynamical system, the input-output manifold learning method has shown to be a powerful tool for solving such a system identification problem. However, in the previous study, the system is assumed to be initially relaxed because the transfer function model is used for system representation. This assumption may not hold in several tasks. To handle the initially non-relaxed system, we propose the alternative approach of the input-output manifold learning with state space model for the system representation. The effectiveness of our proposed method is confirmed by experiments with synthetic data and motion capture data of human-human conversation.

  • Error Propagation Analysis for Single Event Upset considering Masking Effects on Re-Convergent Path

    Go MATSUKAWA  Yuta KIMI  Shuhei YOSHIDA  Shintaro IZUMI  Hiroshi KAWAGUCHI  Masahiko YOSHIMOTO  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E99-A No:6
      Page(s):
    1198-1205

    As technology nodes continue to shrink, the impact of radiation-induced soft error on processor reliability increases. Estimation of processor reliability and identification of vulnerable flip-flops requires accurate soft error rate (SER) analysis techniques. This paper presents a proposal for a soft error propagation analysis technique. We specifically examine single event upset (SEU) occurring at a flip-flop in sequential circuits. When SEUs propagate in sequential circuits, the faults can be masked temporally and logically. Conventional soft error propagation analysis techniques do not consider error convergent timing on re-convergent paths. The proposed technique can analyze soft error propagation while considering error-convergent timing on a re-convergent path by combinational analysis of temporal and logical effects. The proposed technique also considers the case in which the temporal masking is disabled with an enable signal of the erroneous flip-flop negated. Experimental results show that the proposed technique improves inaccuracy by 70.5%, on average, compared with conventional techniques using ITC 99 and ISCAS 89 benchmark circuits when the enable probability is 1/3, while the runtime overhead is only 1.7% on average.

  • The Stability-Featured Dynamic Multi-Path Routing

    Zhaofeng WU  Guyu HU  Fenglin JIN  Yinjin FU  Jianxin LUO  Tingting ZHANG  

     
    LETTER-Information Network

      Pubricized:
    2016/03/01
      Vol:
    E99-D No:6
      Page(s):
    1690-1693

    Stability-featured dynamic multi-path routing (SDMR) based on the existing Traffic engineering eXplicit Control Protocol (TeXCP) is proposed and evaluated for traffic engineering in terrestrial networks. SDMR abandons the sophisticated stability maintenance mechanisms of TeXCP, whose load balancing scheme is also modified in the proposed mechanism. SDMR is proved to be able to converge to a unique equilibria state, which has been corroborated by the simulations.

  • Food Image Recognition Using Covariance of Convolutional Layer Feature Maps

    Atsushi TATSUMA  Masaki AONO  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2016/02/23
      Vol:
    E99-D No:6
      Page(s):
    1711-1715

    Recent studies have obtained superior performance in image recognition tasks by using, as an image representation, the fully connected layer activations of Convolutional Neural Networks (CNN) trained with various kinds of images. However, the CNN representation is not very suitable for fine-grained image recognition tasks involving food image recognition. For improving performance of the CNN representation in food image recognition, we propose a novel image representation that is comprised of the covariances of convolutional layer feature maps. In the experiment on the ETHZ Food-101 dataset, our method achieved 58.65% averaged accuracy, which outperforms the previous methods such as the Bag-of-Visual-Words Histogram, the Improved Fisher Vector, and CNN-SVM.

  • Robust Object Tracking with Compressive Sensing and Patches Matching

    Jiatian PI  Keli HU  Xiaolin ZHANG  Yuzhang GU  Yunlong ZHAN  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2016/02/26
      Vol:
    E99-D No:6
      Page(s):
    1720-1723

    Object tracking is one of the fundamental problems in computer vision. However, there is still a need to improve the overall capability in various tracking circumstances. In this letter, a patches-collaborative compressive tracking (PCCT) algorithm is presented. Experiments on various challenging benchmark sequences demonstrate that the proposed algorithm performs favorably against several state-of-the-art algorithms.

  • Extended Dual Virtual Paths Algorithm Considering the Timing Requirements of IEC61850 Substation Message Types

    Seokjoon HONG  Ducsun LIM  Inwhee JOE  

     
    PAPER-Information Network

      Pubricized:
    2016/03/07
      Vol:
    E99-D No:6
      Page(s):
    1563-1575

    The high-availability seamless redundancy (HSR) protocol is a representative protocol that fulfills the reliability requirements of the IEC61850-based substation automation system (SAS). However, it has the drawback of creating unnecessary traffic in a network. To solve this problem, a dual virtual path (DVP) algorithm based on HSR was recently presented. Although this algorithm dramatically reduces network traffic, it does not consider the substation timing requirements of messages in an SAS. To reduce unnecessary network traffic in an HSR ring network, we introduced a novel packet transmission (NPT) algorithm in a previous work that considers IEC61850 message types. To further reduce unnecessary network traffic, we propose an extended dual virtual paths (EDVP) algorithm in this paper that considers the timing requirements of IEC61850 message types. We also include sending delay (SD), delay queue (DQ), and traffic flow latency (TFL) features in our proposal. The source node sends data frames without SDs on the primary paths, and it transmits the duplicate data frames with SDs on the secondary paths. Since the EDVP algorithm discards all of the delayed data frames in DQs when there is no link or node failure, unnecessary network traffic can be reduced. We demonstrate the principle of the EDVP algorithm and its performance in terms of network traffic compared to the standard HSR, NPT, and DVP algorithm using the OPNET network simulator. Throughout the simulation results, the EDVP algorithm shows better traffic performance than the other algorithms, while guaranteeing the timing requirements of IEC61850 message types. Most importantly, when the source node transmits heavy data traffic, the EDVP algorithm shows greater than 80% and 40% network traffic reduction compared to the HSR and DVP approaches, respectively.

  • Micro-Expression Recognition by Regression Model and Group Sparse Spatio-Temporal Feature Learning

    Ping LU  Wenming ZHENG  Ziyan WANG  Qiang LI  Yuan ZONG  Minghai XIN  Lenan WU  

     
    LETTER-Pattern Recognition

      Pubricized:
    2016/02/29
      Vol:
    E99-D No:6
      Page(s):
    1694-1697

    In this letter, a micro-expression recognition method is investigated by integrating both spatio-temporal facial features and a regression model. To this end, we first perform a multi-scale facial region division for each facial image and then extract a set of local binary patterns on three orthogonal planes (LBP-TOP) features corresponding to divided facial regions of the micro-expression videos. Furthermore, we use GSLSR model to build the linear regression relationship between the LBP-TOP facial feature vectors and the micro expressions label vectors. Finally, the learned GSLSR model is applied to the prediction of the micro-expression categories for each test micro-expression video. Experiments are conducted on both CASME II and SMIC micro-expression databases to evaluate the performance of the proposed method, and the results demonstrate that the proposed method is better than the baseline micro-expression recognition method.

  • Performance of All-Optical Amplify-and-Forward WDM/FSO Relaying Systems over Atmospheric Dispersive Turbulence Channels

    Phuc V. TRINH  Ngoc T. DANG  Truong C. THANG  Anh T. PHAM  

     
    PAPER

      Vol:
    E99-B No:6
      Page(s):
    1255-1264

    This paper newly proposes and theoretically analyzes the performance of multi-hop free-space optical (FSO) systems employing optical amplify-and-forward (OAF) relaying technique and wavelength division multiplexing (WDM). The proposed system can provide a low cost, low latency, high flexibility, and large bandwidth access network for multiple users in areas where installation of optical fiber is unfavorable. In WDM/FSO systems, WDM channels suffer from the interchannel crosstalk while FSO channels can be severely affected by the atmospheric turbulence. These impairments together with the accumulation of background and amplifying noises over multiple relays significantly degrade the overall system performance. To deal with this problem, the use of the M-ary pulse position modulation (M-PPM) together with the OAF relaying technique is advocated as a powerful remedy to mitigate the effects of atmospheric turbulence. For the performance analysis, we use a realistic model of Gaussian pulse propagation to investigate major atmospheric effects, including signal turbulence and pulse broadening. We qualitatively discuss the impact of various system parameters, including the required average transmitted powers per information bit corresponding to specific values of bit error rate (BER), transmission distance, number of relays, and turbulence strength. Our numerical results are also thoroughly validated by Monte-Carlo (M-C) simulations.

  • Sparse Trajectory Prediction Method Based on Entropy Estimation

    Lei ZHANG  Leijun LIU  Wen LI  

     
    PAPER

      Pubricized:
    2016/04/01
      Vol:
    E99-D No:6
      Page(s):
    1474-1481

    Most of the existing algorithms cannot effectively solve the data sparse problem of trajectory prediction. This paper proposes a novel sparse trajectory prediction method based on L-Z entropy estimation. Firstly, the moving region of trajectories is divided into a two-dimensional plane grid graph, and then the original trajectories are mapped to the grid graph so that each trajectory can be represented as a grid sequence. Secondly, an L-Z entropy estimator is used to calculate the entropy value of each grid sequence, and then the trajectory which has a comparatively low entropy value is segmented into several sub-trajectories. The new trajectory space is synthesised by these sub-trajectories based on trajectory entropy. The trajectory synthesis can not only resolve the sparse problem of trajectory data, but also make the new trajectory space more credible. In addition, the trajectory scale is limited in a certain range. Finally, under the new trajectory space, Markov model and Bayesian Inference is applied to trajectory prediction with data sparsity. The experiments based on the taxi trajectory dataset of Microsoft Research Asia show the proposed method can make an effective prediction for the sparse trajectory. Compared with the existing methods, our method needs a smaller trajectory space and provides much wider predicting range, faster predicting speed and better predicting accuracy.

  • Alignment Tolerance in Multiple-Stream Transmission Using Orthogonal Directivities under Line-of-Sight Environments

    Maki ARAI  Tomohiro SEKI  Ken HIRAGA  Kazumitsu SAKAMOTO  Tadao NAKAGAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:6
      Page(s):
    1362-1370

    A method for increasing alignment tolerance in simple multiple-stream transmission is described. Its use of π-shifted antenna directivity phase enables it to cancel interference even when antenna placement deviations occur. The interference cancellation by using π-shifted directivities provides higher alignment tolerance than that with conventional fixed weight methods. It also provides smaller channel gain variation than can be obtained using fixed weights even when antenna displacement occurs. An objective function is described that is determined by the alignment tolerance. The function is defined to maximize the alignment tolerance. The method's validity is confirmed by an experimental analysis of two-stream transmission in which the alignment tolerance of the proposed method is compared to that of conventional fixed weight methods.

  • Rate-Distortion Optimized Distributed Compressive Video Sensing

    Jin XU  Yuansong QIAO  Quan WEN  

     
    LETTER-Multimedia Environment Technology

      Vol:
    E99-A No:6
      Page(s):
    1272-1276

    Distributed compressive video sensing (DCVS) is an emerging low-complexity video coding framework which integrates the merits of distributed video coding (DVC) and compressive sensing (CS). In this paper, we propose a novel rate-distortion optimized DCVS codec, which takes advantage of a rate-distortion optimization (RDO) model based on the estimated correlation noise (CN) between a non-key frame and its side information (SI) to determine the optimal measurements allocation for the non-key frame. Because the actual CN can be more accurately recovered by our DCVS codec, it leads to more faithful reconstruction of the non-key frames by adding the recovered CN to the SI. The experimental results reveal that our DCVS codec significantly outperforms the legacy DCVS codecs in terms of both objective and subjective performance.

  • Computational Complexity of Predicting Periodicity in the Models of Lorentz Lattice Gas Cellular Automata

    Takeo HAGIWARA  Tatsuie TSUKIJI  Zhi-Zhong CHEN  

     
    PAPER

      Vol:
    E99-A No:6
      Page(s):
    1034-1049

    Some diffusive and recurrence properties of Lorentz Lattice Gas Cellular Automata (LLGCA) have been expensively studied in terms of the densities of some of the left/right static/flipping mirrors/rotators. In this paper, for any combination S of these well known scatters, we study the computational complexity of the following problem which we call PERIODICITY on the S-model: given a finite configuration that distributes only those scatters in S, whether a particle visits the starting position periodically or not. Previously, the flipping mirror model and the occupied flipping rotator model have been shown unbounded, i.e. the process is always diffusive [17]. On the other hand, PERIODICITY is shown PSPACE-complete in the unoccupied flipping rotator model [21]. In this paper, we show that PERIODICITY is PSPACE-compete in any S-model that is neither occupied, unbounded, nor static. Particularly, we prove that PERIODICITY in any unoccupied and bounded model containing flipping mirror is PSPACE-complete.

  • Inductance and Current Distribution Extraction in Nb Multilayer Circuits with Superconductive and Resistive Components Open Access

    Coenrad FOURIE  Naoki TAKEUCHI  Nobuyuki YOSHIKAWA  

     
    INVITED PAPER

      Vol:
    E99-C No:6
      Page(s):
    683-691

    We describe a calculation tool and modeling methods to find self and mutual inductance and current distribution in superconductive multilayer circuit layouts. Accuracy of the numerical solver is discussed and compared with experimental measurements. Effects of modeling parameter selection on calculation results are shown, and we make conclusions on the selection of modeling parameters for fast but sufficiently accurate calculations when calibration methods are used. Circuit theory for the calculation of branch impedances from the output of the numerical solver is discussed, and compensation for solution difficulties is shown through example. We elaborate on the construction of extraction models for superconductive integrated circuits, with and without resistive branches. We also propose a method to calculate current distribution in a multilayer circuit with multiple bias current feed points. Finally, detailed examples are shown where the effects of stacked vias, bias pillars, coupling, ground connection stacks and ground return currents in circuit layouts for the AIST advanced process (ADP2) and standard process (STP2) are analyzed. We show that multilayer inductance and current distribution extraction in such circuits provides much more information than merely branch inductance, and can be used to improve layouts; for example through reduced coupling between conductors.

  • Enhancing Event-Related Potentials Based on Maximum a Posteriori Estimation with a Spatial Correlation Prior

    Hayato MAKI  Tomoki TODA  Sakriani SAKTI  Graham NEUBIG  Satoshi NAKAMURA  

     
    PAPER

      Pubricized:
    2016/04/01
      Vol:
    E99-D No:6
      Page(s):
    1437-1446

    In this paper a new method for noise removal from single-trial event-related potentials recorded with a multi-channel electroencephalogram is addressed. An observed signal is separated into multiple signals with a multi-channel Wiener filter whose coefficients are estimated based on parameter estimation of a probabilistic generative model that locally models the amplitude of each separated signal in the time-frequency domain. Effectiveness of using prior information about covariance matrices to estimate model parameters and frequency dependent covariance matrices were shown through an experiment with a simulated event-related potential data set.

  • Efficient Two-Step Middle-Level Part Feature Extraction for Fine-Grained Visual Categorization

    Hideki NAKAYAMA  Tomoya TSUDA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2016/02/23
      Vol:
    E99-D No:6
      Page(s):
    1626-1634

    Fine-grained visual categorization (FGVC) has drawn increasing attention as an emerging research field in recent years. In contrast to generic-domain visual recognition, FGVC is characterized by high intra-class and subtle inter-class variations. To distinguish conceptually and visually similar categories, highly discriminative visual features must be extracted. Moreover, FGVC has highly specialized and task-specific nature. It is not always easy to obtain a sufficiently large-scale training dataset. Therefore, the key to success in practical FGVC systems is to efficiently exploit discriminative features from a limited number of training examples. In this paper, we propose an efficient two-step dimensionality compression method to derive compact middle-level part-based features. To do this, we compare both space-first and feature-first convolution schemes and investigate their effectiveness. Our approach is based on simple linear algebra and analytic solutions, and is highly scalable compared with the current one-vs-one or one-vs-all approach, making it possible to quickly train middle-level features from a number of pairwise part regions. We experimentally show the effectiveness of our method using the standard Caltech-Birds and Stanford-Cars datasets.

  • Non-Linear Extension of Generalized Hyperplane Approximation

    Hyun-Chul CHOI  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2016/02/29
      Vol:
    E99-D No:6
      Page(s):
    1707-1710

    A non-linear extension of generalized hyperplane approximation (GHA) method is introduced in this letter. Although GHA achieved a high-confidence result in motion parameter estimation by utilizing the supervised learning scheme in histogram of oriented gradient (HOG) feature space, it still has unstable convergence range because it approximates the non-linear function of regression from the feature space to the motion parameter space as a linear plane. To extend GHA into a non-linear regression for larger convergence range, we derive theoretical equations and verify this extension's effectiveness and efficiency over GHA by experimental results.

  • Exploiting EEG Channel Correlations in P300 Speller Paradigm for Brain-Computer Interface

    Yali LI  Hongma LIU  Shengjin WANG  

     
    PAPER-Biological Engineering

      Pubricized:
    2016/03/07
      Vol:
    E99-D No:6
      Page(s):
    1653-1662

    A brain-computer interface (BCI) translates the brain activity into commands to control external devices. P300 speller based character recognition is an important kind of application system in BCI. In this paper, we propose a framework to integrate channel correlation analysis into P300 detection. This work is distinguished by two key contributions. First, a coefficient matrix is introduced and constructed for multiple channels with the elements indicating channel correlations. Agglomerative clustering is applied to group correlated channels. Second, the statistics of central tendency are used to fuse the information of correlated channels and generate virtual channels. The generated virtual channels can extend the EEG signals and lift up the signal-to-noise ratio. The correlated features from virtual channels are combined with original signals for classification and the outputs of discriminative classifier are used to determine the characters for spelling. Experimental results prove the effectiveness and efficiency of the channel correlation analysis based framework. Compared with the state-of-the-art, the recognition rate was increased by both 6% with 5 and 10 epochs by the proposed framework.

  • Energy Efficient Power Allocation for Delay-QoS Constrained Cognitive Radio Networks

    Ding XU  Qun LI  

     
    LETTER-Communication Theory and Signals

      Vol:
    E99-A No:6
      Page(s):
    1264-1267

    The problem of power allocation in maximizing the energy efficiency of the secondary user (SU) in a delay quality-of-service (QoS) constrained CR network is investigated in this paper. The average interference power constraint is used to protect the transmission of the primary user (SU). The energy efficiency is expressed as the ratio of the effective capacity to the total power consumption. By using non-linear fractional programming and convex optimization theory, we develop an energy efficiency power allocation scheme based on the Dinkelbach method and the Lagrange multiplier method. Numerical results show that the proposed scheme outperforms the existing schemes, in terms of energy efficiency.

1461-1480hit(8249hit)