The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] PA(8249hit)

1381-1400hit(8249hit)

  • Spatial Modeling and Analysis of Cellular Networks Using the Ginibre Point Process: A Tutorial Open Access

    Naoto MIYOSHI  Tomoyuki SHIRAI  

     
    INVITED PAPER

      Vol:
    E99-B No:11
      Page(s):
    2247-2255

    Spatial stochastic models have been much used for performance analysis of wireless communication networks. This is due to the fact that the performance of wireless networks depends on the spatial configuration of wireless nodes and the irregularity of node locations in a real wireless network can be captured by a spatial point process. Most works on such spatial stochastic models of wireless networks have adopted homogeneous Poisson point processes as the models of wireless node locations. While this adoption makes the models analytically tractable, it assumes that the wireless nodes are located independently of each other and their spatial correlation is ignored. Recently, the authors have proposed to adopt the Ginibre point process — one of the determinantal point processes — as the deployment models of base stations (BSs) in cellular networks. The determinantal point processes constitute a class of repulsive point processes and have been attracting attention due to their mathematically interesting properties and efficient simulation methods. In this tutorial, we provide a brief guide to the Ginibre point process and its variant, α-Ginibre point process, as the models of BS deployments in cellular networks and show some existing results on the performance analysis of cellular network models with α-Ginibre deployed BSs. The authors hope the readers to use such point processes as a tool for analyzing various problems arising in future cellular networks.

  • Tunable Dual-Frequency Immittance Inverters on Dual-Composite Right/Left-Handed Transmission Lines (D-CRLH TL) with Variable Capacitors

    Dmitry KHOLODNYAK  Evgenia ZAMESHAEVA  Viacheslav TURGALIEV  Evgenii VOROBEV  

     
    PAPER

      Vol:
    E99-C No:10
      Page(s):
    1113-1121

    Design of lumped-element immittance inverters which support dual-frequency operation and tuning of both operational frequencies is presented. Unique properties of the dual-composite right/left-handed transmission lines (D-CRLH TL) give an opportunity to design immittance inverters with two non-multiple operational frequencies and a stop band between them. Replacement of capacitors of D-CRLH TL unit cells with variable ones enables inverter tunability. Tunability analysis of such immittance inverters is given. It is shown that a tuning range of the operational frequencies is limited by a tolerable variation of the inverter parameter. The design concept is verified by results of electromagnetic simulation and measured frequency characteristics of fixed (non-tunable) as well as tunable dual-frequency immittance inverters and dual-band filters using the inverters.

  • Impact of Interference on 12GHz Band Broadcasting Satellite Services in terms of Increase Rate of Outage Time Caused by Rain Attenuation

    Kazuyoshi SHOGEN  Masashi KAMEI  Susumu NAKAZAWA  Shoji TANAKA  

     
    PAPER

      Vol:
    E99-B No:10
      Page(s):
    2121-2127

    The indexes of the degradation of C/N, ΔT/T and I/N, which can be converted from one to another, are used to evaluate the impact of interference on the satellite link. However, it is not suitable to intuitively understand how these parameters degrade the quality of services. In this paper, we propose to evaluate the impact of interference on the performance of BSS (Broadcasting Satellite Services) in terms of the increase rate of the outage time caused by the rain attenuation. Some calculation results are given for the 12GHz band BSS in Japan.

  • Extended S-Parameter Method for Measuring Reflection and Mutual Coupling of Multi-Antennas Open Access

    Takashi YANAGI  Toru FUKASAWA  Hiroaki MIYASHITA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2016/04/22
      Vol:
    E99-B No:10
      Page(s):
    2195-2202

    In this paper, a measurement method for the impedance and mutual coupling of multi-antennas that we have proposed is summarized. Impedance and mutual coupling characteristics are obtained after reducing the influence of the coaxial cables by synthesizing the measured S-parameters under the condition that unbalanced currents on the outside of the coaxial cables are canceled at feed points. We apply the proposed method to two closely positioned monopole antennas mounted on a small ground plane and demonstrate the validity and effectiveness of the proposed method by simulation and experiment. The proposed method is significantly better in terms of the accuracy of the mutual coupling data. In the presented case, the errors at the resonant frequency of the antennas are only 0.5dB in amplitude and 1.8° in phase.

  • Certificateless Key Agreement Protocols under Strong Models

    Denise H. GOYA  Dionathan NAKAMURA  Routo TERADA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E99-A No:10
      Page(s):
    1822-1832

    Two new authenticated key agreement protocols in the certificateless setting are presented in this paper. Both are proved secure in the extended Canetti-Krawczyk model, under the BDH assumption. The first one is more efficient than the Lippold et al.'s (LBG) protocol, and is proved secure in the same security model. The second protocol is proved secure under the Swanson et al.'s security model, a weaker model. As far as we know, our second proposed protocol is the first one proved secure in the Swanson et al.'s security model. If no pre-computations are done, the first protocol is about 26% faster than LBG, and the second protocol is about 49% faster than LBG, and about 31% faster than the first one. If pre-computations of some operations are done, our two protocols remain faster.

  • Simple Weighted Diversity Combining Technique for Cyclostationarity Detection Based Spectrum Sensing in Cognitive Radio Networks

    Daiki CHO  Shusuke NARIEDA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/04/08
      Vol:
    E99-B No:10
      Page(s):
    2212-2220

    This paper presents a weighted diversity combining technique for the cyclostationarity detection based spectrum sensing of orthogonal frequency division multiplexing signals in cognitive radio. In cognitive radio systems, secondary users must detect the desired signal in an extremely low signal-to-noise ratio (SNR) environment. In such an environment, multiple antenna techniques (space diversity) such as maximum ratio combining are not effective because the energy of the target signal is also extremely weak, and it is difficult to synchronize some received signals. The cyclic autocorrelation function (CAF) is used for traditional cyclostationarity detection based spectrum sensing. In the presented technique, the CAFs of the received signals are combined, while the received signals themselves are combined with general space diversity techniques. In this paper, the value of the CAF at peak and non-peak cyclic frequencies are computed, and we attempt to improve the sensing performance by using different weights for each CAF value. The results were compared with those from conventional methods and showed that the presented technique can improve the spectrum sensing performance.

  • Scattered Reflections on Scattering Parameters — Demystifying Complex-Referenced S Parameters — Open Access

    Shuhei AMAKAWA  

     
    INVITED PAPER

      Vol:
    E99-C No:10
      Page(s):
    1100-1112

    The most commonly used scattering parameters (S parameters) are normalized to a real reference resistance, typically 50Ω. In some cases, the use of S parameters normalized to some complex reference impedance is essential or convenient. But there are different definitions of complex-referenced S parameters that are incompatible with each other and serve different purposes. To make matters worse, different simulators implement different ones and which ones are implemented is rarely properly documented. What are possible scenarios in which using the right one matters? This tutorial-style paper is meant as an informal and not overly technical exposition of some such confusing aspects of S parameters, for those who have a basic familiarity with the ordinary, real-referenced S parameters.

  • Shilling Attack Detection in Recommender Systems via Selecting Patterns Analysis

    Wentao LI  Min GAO  Hua LI  Jun ZENG  Qingyu XIONG  Sachio HIROKAWA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2016/06/27
      Vol:
    E99-D No:10
      Page(s):
    2600-2611

    Collaborative filtering (CF) has been widely used in recommender systems to generate personalized recommendations. However, recommender systems using CF are vulnerable to shilling attacks, in which attackers inject fake profiles to manipulate recommendation results. Thus, shilling attacks pose a threat to the credibility of recommender systems. Previous studies mainly derive features from characteristics of item ratings in user profiles to detect attackers, but the methods suffer from low accuracy when attackers adopt new rating patterns. To overcome this drawback, we derive features from properties of item popularity in user profiles, which are determined by users' different selecting patterns. This feature extraction method is based on the prior knowledge that attackers select items to rate with man-made rules while normal users do this according to their inner preferences. Then, machine learning classification approaches are exploited to make use of these features to detect and remove attackers. Experiment results on the MovieLens dataset and Amazon review dataset show that our proposed method improves detection performance. In addition, the results justify the practical value of features derived from selecting patterns.

  • Iterative Robust MMSE Receiver for STBC under Channel Information Errors

    Namsik YOO  Jong-Hyen BAEK  Kyungchun LEE  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:10
      Page(s):
    2228-2235

    In this paper, an iterative robust minimum-mean square error (MMSE) receiver for space-time block coding (STBC) is proposed to mitigate the performance degradations caused by channel state information (CSI) errors. The proposed scheme estimates an instantaneous covariance matrix of the effective noise, which includes additive white Gaussian noise and the effect of CSI errors. For this estimation, multiple solution candidate vectors are selected based on the distances between the MMSE estimate of the solution and the constellation points, and their a-posteriori probabilities are utilized to execute the estimation of the covariance matrix. To improve the estimation accuracy, the estimated covariance matrix is updated iteratively. Simulation results show that proposed robust receiver achieves substantial performance gains in terms of bit error rates as compared to conventional receiver schemes under CSI errors.

  • Competitive Strategies for Evacuating from an Unknown Affected Area

    Qi WEI  Xuehou TAN  Bo JIANG  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2016/06/22
      Vol:
    E99-D No:10
      Page(s):
    2585-2590

    This article presents efficient strategies for evacuating from an unknown affected area in a plane. Evacuation is the process of movement away from a threat or hazard such as natural disasters. Consider that one or n(n ≥ 3) agents are lost in an unknown convex region P. The agents know neither the boundary information of P nor their positions. We seek competitive strategies that can evacuate the agent from P as quickly as possible. The performance of the strategy is measured by a competitive ratio of the evacuation path over the shortest path. We give a 13.812-competitive spiral strategy for one agent, and prove that it is optimal among all monotone and periodic strategies by showing a matching lower bound. Also, we give a new competitive strategy EES for n(n ≥ 3) agents and adjust it to be more efficient with the analysis of its performance.

  • A Wideband Asymmetric Digital Predistortion Architecture for 60 GHz Short Range Wireless Transmitters

    Kenji MIYANAGA  Masashi KOBAYASHI  Noriaki SAITO  Naganori SHIRAKATA  Koji TAKINAMI  

     
    PAPER

      Vol:
    E99-C No:10
      Page(s):
    1190-1199

    This paper presents a wideband digital predistortion (DPD) architecture suitable for wideband wireless systems, such as IEEE 802.11ad/WiGig, where low oversampling ratio of the digital-to-analog converter (DAC) is a bottleneck for available linearization bandwidth. In order to overcome the bandwidth limitation in the conventional DPD, the proposed DPD introduces a complex coefficient filter in the DPD signal processing, which enables it to achieve asymmetric linearization. This approach effectively suppresses one side of adjacent channel leakages with twice the bandwidth as compared to the conventional DPD. The concept is verified through system simulation and measurements. Using a scaled model of a 2 GHz RF carrier frequency, the measurement shows a 4.2 dB advantage over the conventional DPD in terms of adjacent channel leakage.

  • A Statistical Sample-Based Approach to GMM-Based Voice Conversion Using Tied-Covariance Acoustic Models

    Shinnosuke TAKAMICHI  Tomoki TODA  Graham NEUBIG  Sakriani SAKTI  Satoshi NAKAMURA  

     
    PAPER-Voice conversion

      Pubricized:
    2016/07/19
      Vol:
    E99-D No:10
      Page(s):
    2490-2498

    This paper presents a novel statistical sample-based approach for Gaussian Mixture Model (GMM)-based Voice Conversion (VC). Although GMM-based VC has the promising flexibility of model adaptation, quality in converted speech is significantly worse than that of natural speech. This paper addresses the problem of inaccurate modeling, which is one of the main reasons causing the quality degradation. Recently, we have proposed statistical sample-based speech synthesis using rich context models for high-quality and flexible Hidden Markov Model (HMM)-based Text-To-Speech (TTS) synthesis. This method makes it possible not only to produce high-quality speech by introducing ideas from unit selection synthesis, but also to preserve flexibility of the original HMM-based TTS. In this paper, we apply this idea to GMM-based VC. The rich context models are first trained for individual joint speech feature vectors, and then we gather them mixture by mixture to form a Rich context-GMM (R-GMM). In conversion, an iterative generation algorithm using R-GMMs is used to convert speech parameters, after initialization using over-trained probability distributions. Because the proposed method utilizes individual speech features, and its formulation is the same as that of conventional GMM-based VC, it makes it possible to produce high-quality speech while keeping flexibility of the original GMM-based VC. The experimental results demonstrate that the proposed method yields significant improvements in term of speech quality and speaker individuality in converted speech.

  • A Linear Time Algorithm for Finding a Spanning Tree with Non-Terminal Set VNT on Cographs

    Shin-ichi NAKAYAMA  Shigeru MASUYAMA  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2016/07/12
      Vol:
    E99-D No:10
      Page(s):
    2574-2584

    Given a graph G=(V,E) where V and E are a vertex and an edge set, respectively, specified with a subset VNT of vertices called a non-terminal set, the spanning tree with non-terminal set VNT is a connected and acyclic spanning subgraph of G that contains all the vertices of V where each vertex in a non-terminal set is not a leaf. In the case where each edge has the weight of a nonnegative integer, the problem of finding a minimum spanning tree with a non-terminal set VNT of G was known to be NP-hard. However, the complexity of finding a spanning tree on general graphs where each edge has the weight of one was unknown. In this paper, we consider this problem and first show that it is NP-hard even if each edge has the weight of one on general graphs. We also show that if G is a cograph then finding a spanning tree with a non-terminal set VNT of G is linearly solvable when each edge has the weight of one.

  • Reliability-Enhanced ECC-Based Memory Architecture Using In-Field Self-Repair

    Gian MAYUGA  Yuta YAMATO  Tomokazu YONEDA  Yasuo SATO  Michiko INOUE  

     
    PAPER-Dependable Computing

      Pubricized:
    2016/06/27
      Vol:
    E99-D No:10
      Page(s):
    2591-2599

    Embedded memory is extensively being used in SoCs, and is rapidly growing in size and density. It contributes to SoCs to have greater features, but at the expense of taking up the most area. Due to continuous scaling of nanoscale device technology, large area size memory introduces aging-induced faults and soft errors, which affects reliability. In-field test and repair, as well as ECC, can be used to maintain reliability, and recently, these methods are used together to form a combined approach, wherein uncorrectable words are repaired, while correctable words are left to the ECC. In this paper, we propose a novel in-field repair strategy that repairs uncorrectable words, and possibly correctable words, for an ECC-based memory architecture. It executes an adaptive reconfiguration method that ensures 'fresh' memory words are always used until spare words run out. Experimental results demonstrate that our strategy enhances reliability, and the area overhead contribution is small.

  • Robust Hybrid Finger Pattern Identification Using Intersection Enhanced Gabor Based Direction Coding

    Wenming YANG  Wenyang JI  Fei ZHOU  Qingmin LIAO  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2016/07/06
      Vol:
    E99-D No:10
      Page(s):
    2668-2671

    Automated biometrics identification using finger vein images has increasingly generated interest among researchers with emerging applications in human biometrics. The traditional feature-level fusion strategy is limited and expensive. To solve the problem, this paper investigates the possible use of infrared hybrid finger patterns on the back side of a finger, which includes both the information of finger vein and finger dorsal textures in original image, and a database using the proposed hybrid pattern is established. Accordingly, an Intersection enhanced Gabor based Direction Coding (IGDC) method is proposed. The Experiment achieves a recognition ratio of 98.4127% and an equal error rate of 0.00819 on our newly established database, which is fairly competitive.

  • Virtual Sensor Idea-Based Geolocation Using RF Multipath Diversity

    Zhigang CHEN  Lei WANG  He HUANG  Guomei ZHANG  

     
    PAPER-Digital Signal Processing

      Vol:
    E99-A No:10
      Page(s):
    1799-1805

    A novel virtual sensors-based positioning method has been presented in this paper, which can make use of both direct paths and indirect paths. By integrating the virtual sensor idea and Bayesian state and observation framework, this method models the indirect paths corresponding to persistent virtual sensors as virtual direct paths and further reformulates the wireless positioning problem as the maximum likelihood estimation of both the mobile terminal's positions and the persistent virtual sensors' positions. Then the method adopts the EM (Expectation Maximization) and the particle filtering schemes to estimate the virtual sensors' positions and finally exploits not only the direct paths' measurements but also the indirect paths' measurements to realize the mobile terminal's positions estimation, thus achieving better positioning performance. Simulation results demonstrate the effectiveness of the proposed method.

  • Non-Crossover and Multi-Mutation Based Genetic Algorithm for Flexible Job-Shop Scheduling Problem

    Zhongshan ZHANG  Yuning CHEN  Yuejin TAN  Jungang YAN  

     
    PAPER-Mathematical Systems Science

      Vol:
    E99-A No:10
      Page(s):
    1856-1862

    This paper presents a non-crossover and multi-mutation based genetic algorithm (NMGA) for the Flexible Job-shop Scheduling problem (FJSP) with the criterion to minimize the maximum completion time (makespan). Aiming at the characteristics of FJSP, three mutation operators based on operation sequence coding and machine assignment coding are proposed: flip, slide, and swap. Meanwhile, the NMGA framework, coding scheme, as well as the decoding algorithm are also specially designed for the FJSP. In the framework, recombination operator crossover is not included and a special selection strategy is employed. Computational results based on a set of representative benchmark problems were provided. The evidence indicates that the proposed algorithm is superior to several recently published genetic algorithms in terms of solution quality and convergence ability.

  • Channel Impulse Response Measurements-Based Location Estimation Using Kernel Principal Component Analysis

    Zhigang CHEN  Xiaolei ZHANG  Hussain KHURRAM  He HUANG  Guomei ZHANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E99-A No:10
      Page(s):
    1876-1880

    In this letter, a novel channel impulse response (CIR)-based fingerprinting positioning method using kernel principal component analysis (KPCA) has been proposed. During the offline phase of the proposed method, a survey is performed to collect all CIRs from access points, and a fingerprint database is constructed, which has vectors including CIR and physical location. During the online phase, KPCA is first employed to solve the nonlinearity and complexity in the CIR-position dependencies and extract the principal nonlinear features in CIRs, and support vector regression is then used to adaptively learn the regress function between the KPCA components and physical locations. In addition, the iterative narrowing-scope step is further used to refine the estimation. The performance comparison shows that the proposed method outperforms the traditional received signal strength based positioning methods.

  • Low Cost, High Performance of Coplanar Waveguide Fabricated by Screen Printing Technology Open Access

    Masahiro HORIBE  

     
    INVITED PAPER

      Vol:
    E99-C No:10
      Page(s):
    1094-1099

    This paper presents an innovative fabrication process for a planar circuits at millimeter-wave frequency. Screen printing technology provides low cost and high performance coplanar waveguides (CPW) lines in planar devices operated at millimeter-wave frequency up to 110GHz. Printed transmission lines provide low insertion losses of 0.30dB/mm at 110GHz and small return loss like as impedance standard lines. In the paper, Multiline Thru-Reflect-Line (TRL) calibration was also demonstrated by using the impedance standard substrates (ISS) fabricated by screen printing. Regarding calibration capability validation, verification devices were measured and compare the results to the result obtained by the TRL calibration using commercial ISS. The comparison results obtained by calibration of screen printing ISS are almost the same as results measured based on conventional ISS technology.

  • Topics Arising from the WRC-15 with Respect to Satellite-Related Agenda Items Open Access

    Nobuyuki KAWAI  Satoshi IMATA  

     
    INVITED PAPER

      Vol:
    E99-B No:10
      Page(s):
    2113-2120

    Along with remarkable advancement of radiocommunication services including satellite services, the radio-frequency spectrum and geostationary-satellite orbit are getting congested. WRC-15 was held in November 2015 to study and implement efficient use of those natural resources. There were a number of satellite-related agenda items associated with frequency allocation, new usages of satellite communications and satellite regulatory issues. This paper overviews the outcome from these agenda items of WRC-15 as well as the agenda items for the next WRC (i.e. the WRC-19).

1381-1400hit(8249hit)