The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] PA(8249hit)

1221-1240hit(8249hit)

  • Low-Complexity Recursive-Least-Squares-Based Online Nonnegative Matrix Factorization Algorithm for Audio Source Separation

    Seokjin LEE  

     
    LETTER-Music Information Processing

      Pubricized:
    2017/02/06
      Vol:
    E100-D No:5
      Page(s):
    1152-1156

    An online nonnegative matrix factorization (NMF) algorithm based on recursive least squares (RLS) is described in a matrix form, and a simplified algorithm for a low-complexity calculation is developed for frame-by-frame online audio source separation system. First, the online NMF algorithm based on the RLS method is described as solving the NMF problem recursively. Next, a simplified algorithm is developed to approximate the RLS-based online NMF algorithm with low complexity. The proposed algorithm is evaluated in terms of audio source separation, and the results show that the performance of the proposed algorithms are superior to that of the conventional online NMF algorithm with significantly reduced complexity.

  • Power-Supply Rejection Model Analysis of Capacitor-Less LDO Regulator Designs

    Soyeon JOO  Jintae KIM  SoYoung KIM  

     
    PAPER-Electronic Circuits

      Vol:
    E100-C No:5
      Page(s):
    504-512

    This paper presents accurate DC and high frequency power-supply rejection (PSR) models for low drop-out (LDO) regulators using different types of active loads and pass transistors. Based on the proposed PSR model, we suggest design guidelines to achieve a high DC PSR or flat bandwidth (BW) by choosing appropriate active loads and pass transistors. Our PSR model captures the intricate interaction between the error amplifiers (EAs) and the pass devices by redefining the transfer function of the LDO topologies. The accuracy of our model has been verified through SPICE simulation and measurements. Moreover, the measurement results of the LDOs fabricated using the 0.18 µm CMOS process are consistent with the design guidelines suggested in this work.

  • Massive Antenna Systems for Wireless Entrance (MAS-WE): Practical Application of Massive MIMO with Simplified Space Division Multiplexing Schemes

    Kazuki MARUTA  Atsushi OHTA  Satoshi KUROSAKI  Takuto ARAI  Masataka IIZUKA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2016/11/16
      Vol:
    E100-B No:5
      Page(s):
    779-787

    This paper proposes a practical application of Massive MIMO technology, Massive Antenna Systems for Wireless Entrance (MAS-WE), and along with related inter-user interference cancellation (IUIC) and scheduling techniques. MAS-WE, in which the entrance base station (EBS) employs a large number of antennas, can effectively provide high capacity wireless entrance links to a large number of access points (APs) distributed over a wide coverage area. The proposed techniques are simplified to practical implementation; EBS side uses around 100 antenna elements to spatially multiplex more than 16 signal streams. SIR performance is evaluated by system level simulations that consider imperfect channel state information (CSI). The results show that MAS-WE with the proposed techniques can reliably achieve high spectral efficiency with high level space division multiplexing.

  • An Improved EEHEMT RF Noise Model for 0.25 µm InGaP pHEMT Transistor Using Verilog-A Language

    An-Sam PENG  Lin-Kun WU  

     
    PAPER

      Vol:
    E100-C No:5
      Page(s):
    424-429

    In this paper, an accurate experimental noise model to improve the EEHEMT nonlinear model using the Verilog-A language in Agilent ADS is presented for the first time. The present EEHEMT model adopts channel noise to model the noise behavior of pseudomorphic high electron mobility transistor (pHEMT). To enhance the accuracy of the EEHEMT noise model, we add two extra noise sources: gate shot noise and induced gate noise current. Here we demonstrate the power spectral density of the channel noise Sid and gate noise Sig versus gate-source voltage for 0.25 µm pHEMT devices. Additionally, the related noise source parameters, i.e., P, R, and C are presented. Finally, we compare four noise parameters between the simulation and model, and the agreement between the measurement and simulation results shows that this proposed approach is dependable and accurate.

  • A Miniaturized Absorptive/Transmissive Radome with Switchable Passband and Wide Absorbing Band

    Bo YI  Peiguo LIU  Qihui ZHOU  Tengguang FAN  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2016/11/21
      Vol:
    E100-B No:5
      Page(s):
    788-792

    In this paper, a miniaturized absorptive/transmissive radome with switchable passband and wide absorbing band is designed. Pin diodes are loaded on the radome in order to obtain switchable passband and miniaturized unit cells, while the resistor loaded double square loops are used to absorb the incident wave. The total thickness of the radome is only 4.5mm. Its transmission and absorbing properties are verified by both synthetic experiments and measurements in the anechoic chamber. Furthermore, the switchable passband of the radome is also evaluated using a waveguide simulator.

  • Non-Coherent MIMO of Per Transmit Antenna Differential Mapping (PADM) Employing Asymmetric Space-Time Mapping and Channel Prediction

    Hiroshi KUBO  Takuma YAMAGISHI  Toshiki MORI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/11/16
      Vol:
    E100-B No:5
      Page(s):
    808-817

    This paper proposes performance improvement schemes for non-coherent multiple-input multiple-output (MIMO) communication systems employing per transmit antenna differential mapping (PADM). PADM is one form of differential space-time coding (DSTC), which generates an independent differentially encoded sequence for each of the multiple transmit antennas by means of space-time coding and mapping. The features of the proposed schemes are as follows: 1) it employs an asymmetric space-time mapping instead of the conventional symmetric space-time mapping in order to lower the required signal to noise power ratio (SNR) for maintaining the bit error rate (BER) performance; 2) it employs an analytically derived branch metric criterion based on channel prediction for per-survivor processing (PSP) in order to track fast time-varying channels. Finally, computer simulation results confirm that the proposed schemes improve the required SNR by around 1dB and can track at the maximum Doppler frequency normalized by symbol rate of 5%.

  • MAC Protocol for Improving Throughput and Balancing Uplink/Downlink Throughput for Wireless Local Area Networks with Long Propagation Delays

    Takayuki NISHIO  Kaito FUNABIKI  Masahiro MORIKURA  Koji YAMAMOTO  Daisuke MURAYAMA  Katsuya NAKAHIRA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2016/11/25
      Vol:
    E100-B No:5
      Page(s):
    874-883

    Long-distance wireless local area networks (WLANs) are the key enablers of wide-area and low-cost access networks in rural areas. In a WLAN, the long propagation delay between an access point (AP) and stations (STAs) significantly degrades the throughput and creates a throughput imbalance because the delay causes unexpected frame collisions. This paper summarizes the problems caused in the medium access control (MAC) mechanism of the WLAN by a long propagation delay. We propose a MAC protocol for solving the delay-induced throughput degradation and the throughput imbalance between the uplink and the downlink in WLANs to address these problems. In the protocol, the AP extends NAV duration of CTS frame to protect an ACK frame and transmits its data frame to avoid delay induced frame collisions by piggybacking on the ACK frame transmission. We also provide a throughput model for the proposed protocol based on the Bianchi model. A numerical analysis using the proposed throughput model and simulation evaluation demonstrate that the proposed protocol increases the system throughput by 150% compared with that obtained using the conventional method, and the uplink throughput can be increased to the same level as the downlink throughput.

  • A Super-Resolution Channel Estimation Algorithm Using Convex Programming

    Huan HAO  Huali WANG  Wanghan LV  Liang CHEN  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:5
      Page(s):
    1236-1239

    This paper proposes an effective continuous super-resolution (CSR) algorithm for the multipath channel estimation. By designing a preamble including up-chirp and down-chirp symbols, the Doppler shift and multipath delay are estimated jointly by using convex programming. Simulation results show that the proposed CSR can achieve better detection probability of the number of multipaths than the eigenvalue based methods. Moreover, compared with conventional super-resolution techniques, such as MUSIC and ESPRIT methods, the proposed CSR algorithm demonstrates its advantage in root mean square error of the Doppler shift and multipath delay, especially for the closely located paths within low SNR.

  • Deterministic Particle Swarm Optimizer with the Convergence and Divergence Dynamics

    Tomoyuki SASAKI  Hidehiro NAKANO  Arata MIYAUCHI  Akira TAGUCHI  

     
    LETTER-Nonlinear Problems

      Vol:
    E100-A No:5
      Page(s):
    1244-1247

    In this paper, we propose a new paradigm of deterministic PSO, named piecewise-linear particle swarm optimizer (PPSO). In PPSO, each particle has two search dynamics, a convergence mode and a divergence mode. The trajectory of each particle is switched between the two dynamics and is controlled by parameters. We analyze convergence condition of each particle and investigate parameter conditions to allow particles to converge to an equilibrium point through numerical experiments. We further compare solving performances of PPSO. As a result, we report here that the solving performances of PPSO are substantially the same as or superior to those of PSO.

  • Improved Quasi Sliding Mode Control with Adaptive Compensation for Matrix Rectifier

    Zhanhu HU  Wang HU  Zhiping WANG  

     
    LETTER-Systems and Control

      Vol:
    E100-A No:5
      Page(s):
    1240-1243

    To improve the quality of waveforms and achieve a high input power factor (IPF) for matrix rectifier, a novel quasi sliding mode control (SMC) with adaptive compensation is proposed in this letter. Applying quasi-SMC can effective obviate the disturbances of time delay and spatial lag, and SMC based on continuous function is better than discontinuous function to eliminate the chattering. Furthermore, compared with conventional compensation, an adaptive quasi-SMC compensation without any accurate detection for internal parameters is easier to be implementated, which has shown a superior advance. Theoretical analysis and experiments are carried out to validate the correctness of the novel control scheme.

  • Reliability Function and Strong Converse of Biometrical Identification Systems Based on List-Decoding

    Vamoua YACHONGKA  Hideki YAGI  

     
    LETTER-Information Theory

      Vol:
    E100-A No:5
      Page(s):
    1262-1266

    The biometrical identification system, introduced by Willems et al., is a system to identify individuals based on their measurable physical characteristics. Willems et al. characterized the identification capacity of a discrete memoryless biometrical identification system from information theoretic perspectives. Recently, Mori et al. have extended this scenario to list-decoding whose list size is an exponential function of the data length. However, as the data length increases, how the maximum identification error probability (IEP) behaves for a given rate has not yet been characterized for list-decoding. In this letter, we investigate the reliability function of the system under fixed-size list-decoding, which is the optimal exponential behavior of the maximum IEP. We then use Arimoto's argument to analyze a lower bound on the maximum IEP with list-decoding when the rate exceeds the capacity, which leads to the strong converse theorem. All results are derived under the condition that an unknown individual need not be uniformly distributed and the identification process is done without the knowledge of the prior distribution.

  • A Survey of Efficient Ray-Tracing Techniques for Mobile Radio Propagation Analysis Open Access

    Tetsuro IMAI  

     
    INVITED SURVEY PAPER-Antennas and Propagation

      Pubricized:
    2016/12/01
      Vol:
    E100-B No:5
      Page(s):
    666-679

    With the advances in computer processing that have yielded an enormous increase in performance, numerical analytical approaches based on electromagnetic theory have recently been applied to mobile radio propagation analysis. One such approach is the ray-tracing method based on geometrical optics and the uniform geometrical theory of diffraction. In this paper, ray-tracing techniques that have been proposed in order to improve computational accuracy and speed are surveyed. First, imaging and ray-launching methods are described and their extended methods are surveyed as novel fundamental ray-tracing techniques. Next, various ray-tracing acceleration techniques are surveyed and categorized into three approaches, i.e., deterministic, heuristic, and brute force. Then, hybrid methods are surveyed such as those employing Physical optics, the Effective Roughness model, and the Finite-Difference Time-Domain method that have been proposed in order to improve analysis accuracy.

  • Null-Space Expansion for Multiuser Massive MIMO Inter-User Interference Suppression in Time Varying Channels Open Access

    Tatsuhiko IWAKUNI  Kazuki MARUTA  Atsushi OHTA  Yushi SHIRATO  Takuto ARAI  Masataka IIZUKA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2016/11/21
      Vol:
    E100-B No:5
      Page(s):
    865-873

    This paper proposes a null-space expansion scheme for multiuser massive MIMO transmission in order to suppress inter-user interference (IUI) triggered by the temporal variation of the channel. The downlink multiuser MIMO channel capacity of time varying channels is severely degraded since IUI must be suppressed at the transmitter side by using past estimated channel state information at the transmitter side (CSIT). Massive MIMO has emerged as one of the most promising technologies for further capacity enhancement by increasing the number of base station (BS) antenna elements. Exploiting the excess degrees of freedom (DoFs) inherent in massive MIMO, a BS with the proposed IUI suppression scheme performs multiple null-steering for each UE (User Equipment) antenna element, which expands the null-space dimension. Computer simulations show that the proposed scheme has superior IUI suppression performance to the existing channel prediction scheme in time varying channels.

  • Traffic Anomaly Detection Based on Robust Principal Component Analysis Using Periodic Traffic Behavior

    Takahiro MATSUDA  Tatsuya MORITA  Takanori KUDO  Tetsuya TAKINE  

     
    PAPER-Network

      Pubricized:
    2016/11/21
      Vol:
    E100-B No:5
      Page(s):
    749-761

    In this paper, we study robust Principal Component Analysis (PCA)-based anomaly detection techniques in network traffic, which can detect traffic anomalies by projecting measured traffic data onto a normal subspace and an anomalous subspace. In a PCA-based anomaly detection, outliers, anomalies with excessively large traffic volume, may contaminate the subspaces and degrade the performance of the detector. To solve this problem, robust PCA methods have been studied. In a robust PCA-based anomaly detection scheme, outliers can be removed from the measured traffic data before constructing the subspaces. Although the robust PCA methods are promising, they incure high computational cost to obtain the optimal location vector and scatter matrix for the subspace. We propose a novel anomaly detection scheme by extending the minimum covariance determinant (MCD) estimator, a robust PCA method. The proposed scheme utilizes the daily periodicity in traffic volume and attempts to detect anomalies for every period of measured traffic. In each period, before constructing the subspace, outliers are removed from the measured traffic data by using a location vector and a scatter matrix obtained in the preceding period. We validate the proposed scheme by applying it to measured traffic data in the Abiline network. Numerical results show that the proposed scheme provides robust anomaly detection with less computational cost.

  • Vacuum Annealing and Passivation of HfS2 FET for Mitigation of Atmospheric Degradation

    Vikrant UPADHYAYA  Toru KANAZAWA  Yasuyuki MIYAMOTO  

     
    PAPER

      Vol:
    E100-C No:5
      Page(s):
    453-457

    The performance of devices based on two dimensional (2D) materials is significantly affected upon prolonged exposure to atmosphere. We analyzed time based environmental degradation of electrical properties of HfS2 field effect transistors. Atmospheric entities like oxygen and moisture adversely affect the device surface and reduction in drain current is observed over period of 48 hours. Two corrective measures, namely, PMMA passivation and vacuum annealing, have been studied to address the diminution of current by contaminants. PMMA passivation prevents the device from environment and reduces the effect of Coulomb scattering. Improvement in current characteristics signifies the importance of dielectric passivation for 2D materials. On the other hand, vacuum annealing is useful in removing contaminants from the affected surface. In order to figure out optimum process conditions, properties have been studied at various annealing temperatures. The improvement in drain current level was observed upon vacuum annealing within optimum range of annealing temperature.

  • On the Performance of Dual-Hop Variable-Gain AF Relaying with Beamforming over η-µ Fading Channels

    Ayaz HUSSAIN  Sang-Hyo KIM  Seok-Ho CHANG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/10/17
      Vol:
    E100-B No:4
      Page(s):
    619-626

    A dual-hop amplify-and-forward (AF) relaying system with beamforming is analyzed over η-µ fading channels that includes Nakagami-m, Nakagami-q (Hoyt), and Rayleigh fading channels as special cases. New and exact expressions for the outage probability (OP) and average capacity are derived. Moreover, a new asymptotic analysis is also conducted for the OP and average capacity in terms of basic elementary functions which make it easy to understand the system behavior and the impact of channel parameters. The viability of the analysis is verified by Monte Carlo simulations.

  • Plate-Laminated Waveguide Monopulse Slot Array Antenna with Full-Corporate-Feed in the E-Band Open Access

    Xin XU  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2016/10/28
      Vol:
    E100-B No:4
      Page(s):
    575-585

    This paper presents the design and characterization of an E-band 16×16-slot monopulse array antenna with full-corporate-feed fabricated by the commercially available batch process of diffusion bonding of laminated copper plates. The antenna is multi-layered, and consists of vertically-interconnected radiating elements, a corporate-feed circuit and a comparator. It has four input ports for different excitations. Sum and difference beams in different cut-planes for monopulse operation can be generated. The antenna has a quasi-planar profile, and a total size of 13.31 λ0×13.31λ0×1.52λ0 (λ0 is the wavelength at the design frequency of 78.5GHz). The antenna demonstrates a wide operation bandwidth of 17.2 (70-87.2) GHz for VSWR < 2. At 78.5GHz: 1) for the sum beam, there is a 32.6-dBi realized gain (83% antenna efficiency) and a 33.3-dBi directivity (95% aperture efficiency); 2) for the difference beams in the E-, H-, 45°-, and 135°-planes, the null depths are -53.0, -58.0, -57.8, and -65.6dB, respectively. Across the full operation band where the sum main-beam and difference null are able to consistently point at the boresight, the antenna also demonstrates excellent performance in terms of high gain, high efficiency, high isolation, low cross-polarization, and distinguished monopulse capability.

  • l-Close Range Friends Query on Social Grid Index

    Changbeom SHIM  Wooil KIM  Wan HEO  Sungmin YI  Yon Dohn CHUNG  

     
    LETTER

      Pubricized:
    2017/01/17
      Vol:
    E100-D No:4
      Page(s):
    811-812

    The development of smart devices has led to the growth of Location-Based Social Networking Services (LBSNSs). In this paper, we introduce an l-Close Range Friends query that finds all l-hop friends of a user within a specified range. We also propose a query processing method on Social Grid Index (SGI). Using real datasets, the performance of our method is evaluated.

  • A 1.9GHz Low-Phase-Noise Complementary Cross-Coupled FBAR-VCO without Additional Voltage Headroom in 0.18µm CMOS Technology

    Guoqiang ZHANG  Awinash ANAND  Kousuke HIKICHI  Shuji TANAKA  Masayoshi ESASHI  Ken-ya HASHIMOTO  Shinji TANIGUCHI  Ramesh K. POKHAREL  

     
    PAPER

      Vol:
    E100-C No:4
      Page(s):
    363-369

    A 1.9GHz film bulk acoustic resonator (FBAR)-based low-phase-noise complementary cross-coupled voltage-controlled oscillator (VCO) is presented. The FBAR-VCO is designed and fabricated in 0.18µm CMOS process. The DC latch and the low frequency instability are resolved by employing the NMOS source coupling capacitor and the DC blocked cross-coupled pairs. Since no additional voltage headroom is required, the proposed FBAR-VCO can be operated at a low power supply voltage of 1.1V with a wide voltage swing of 0.9V. An effective phase noise optimization is realized by a reasonable trade-off between the output resistance and the trans-conductance of the cross-coupled pairs. The measured performance shows the proposed FBAR-VCO achieves a phase noise of -148dBc/Hz at 1MHz offset with a figure of merit (FoM) of -211.6dB.

  • A Linear-Correction Method for TDOA and FDOA-Based Moving Source Localization

    Bing DENG  Zhengbo SUN  Le YANG  Dexiu HU  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:4
      Page(s):
    1066-1069

    A linear-correction method is developed for source position and velocity estimation using time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements. The proposed technique first obtains an initial source location estimate using the first-step processing of an existing algebraic algorithm. It then refines the initial localization result by estimating via weighted least-squares (WLS) optimization and subtracting out its estimation error. The new solution is shown to be able to achieve the Cramer-Rao lower bound (CRLB) accuracy and it has better accuracy over several benchmark methods at relatively high noise levels.

1221-1240hit(8249hit)