The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] PAR(2741hit)

361-380hit(2741hit)

  • Multiple Speech Source Separation with Non-Sparse Components Recovery by Using Dual Similarity Determination

    Maoshen JIA  Jundai SUN  Feng DENG  Junyue SUN  

     
    PAPER-Elemental Technologies for human behavior analysis

      Pubricized:
    2018/01/19
      Vol:
    E101-D No:4
      Page(s):
    925-932

    In this work, a multiple source separation method with joint sparse and non-sparse components recovery is proposed by using dual similarity determination. Specifically, a dual similarity coefficient is designed based on normalized cross-correlation and Jaccard coefficients, and its reasonability is validated via a statistical analysis on a quantitative effective measure. Thereafter, by regarding the sparse components as a guide, the non-sparse components are recovered using the dual similarity coefficient. Eventually, a separated signal is obtained by a synthesis of the sparse and non-sparse components. Experimental results demonstrate the separation quality of the proposed method outperforms some existing BSS methods including sparse components separation based methods, independent components analysis based methods and soft threshold based methods.

  • Impossible Differential Attack on Reduced Round SPARX-128/256

    Muhammad ELSHEIKH  Mohamed TOLBA  Amr M. YOUSSEF  

     
    LETTER-Cryptography and Information Security

      Vol:
    E101-A No:4
      Page(s):
    731-733

    SPARX-128/256 is one of the two versions of the SPARX-128 block cipher family. It has 128-bit block size and 256-bit key size. SPARX has been developed using ARX-based S-boxes with the aim of achieving provable security against single-trail differential and linear cryptanalysis. In this letter, we propose 20-round impossible differential distinguishers for SPARX-128. Then, we utilize these distinguishers to attack 24 rounds (out of 40 rounds) of SPARX-128/256. Our attack has time complexity of 2232 memory accesses, memory complexity of 2160.81 128-bit blocks, and data complexity of 2104 chosen plaintexts.

  • Sequential Bayesian Nonparametric Multimodal Topic Models for Video Data Analysis

    Jianfei XUE  Koji EGUCHI  

     
    PAPER

      Pubricized:
    2018/01/18
      Vol:
    E101-D No:4
      Page(s):
    1079-1087

    Topic modeling as a well-known method is widely applied for not only text data mining but also multimedia data analysis such as video data analysis. However, existing models cannot adequately handle time dependency and multimodal data modeling for video data that generally contain image information and speech information. In this paper, we therefore propose a novel topic model, sequential symmetric correspondence hierarchical Dirichlet processes (Seq-Sym-cHDP) extended from sequential conditionally independent hierarchical Dirichlet processes (Seq-CI-HDP) and sequential correspondence hierarchical Dirichlet processes (Seq-cHDP), to improve the multimodal data modeling mechanism via controlling the pivot assignments with a latent variable. An inference scheme for Seq-Sym-cHDP based on a posterior representation sampler is also developed in this work. We finally demonstrate that our model outperforms other baseline models via experiments.

  • Detecting Anomalous Reviewers and Estimating Summaries from Early Reviews Considering Heterogeneity

    Yasuhito ASANO  Junpei KAWAMOTO  

     
    PAPER

      Pubricized:
    2018/01/18
      Vol:
    E101-D No:4
      Page(s):
    1003-1011

    Early reviews, posted on online review sites shortly after products enter the market, are useful for estimating long-term evaluations of those products and making decisions. However, such reviews can be influenced easily by anomalous reviewers, including malicious and fraudulent reviewers, because the number of early reviews is usually small. It is therefore challenging to detect anomalous reviewers from early reviews and estimate long-term evaluations by reducing their influences. We find that two characteristics of heterogeneity on actual review sites such as Amazon.com cause difficulty in detecting anomalous reviewers from early reviews. We propose ideas for consideration of heterogeneity, and a methodology for computing reviewers' degree of anomaly and estimating long-term evaluations simultaneously. Our experimental evaluations with actual reviews from Amazon.com revealed that our proposed method achieves the best performance in 19 of 20 tests compared to state-of-the-art methodologies.

  • Improving Recommendation via Inference of User Popularity Preference in Sparse Data Environment

    Xiaoying TAN  Yuchun GUO  Yishuai CHEN  Wei ZHU  

     
    PAPER

      Pubricized:
    2018/01/18
      Vol:
    E101-D No:4
      Page(s):
    1088-1095

    The Collaborative Filtering (CF) algorithms work fairly well in personalized recommendation except in sparse data environment. To deal with the sparsity problem, researchers either take into account auxiliary information extracted from additional data resources, or set the missing ratings with default values, e.g., video popularity. Nevertheless, the former often costs high and incurs difficulty in knowledge transference whereas the latter degrades the accuracy and coverage of recommendation results. To our best knowledge, few literatures take advantage of users' preference on video popularity to tackle this problem. In this paper, we intend to enhance the performance of recommendation algorithm via the inference of the users' popularity preferences (PPs), especially in a sparse data environment. We propose a scheme to aggregate users' PPs and a Collaborative Filtering based algorithm to make the inference of PP feasible and effective from a small number of watching records. We modify a k-Nearest-Neighbor recommendation algorithm and a Matrix Factorization algorithm via introducing the inferred PP. Experiments on a large-scale commercial dataset show that the modified algorithm outperforms the original CF algorithms on both the recommendation accuracy and coverage. The significance of improvement is significant especially with the data sparsity.

  • Blind Source Separation and Equalization Based on Support Vector Regression for MIMO Systems

    Chao SUN  Ling YANG  Juan DU  Fenggang SUN  Li CHEN  Haipeng XI  Shenglei DU  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2017/08/28
      Vol:
    E101-B No:3
      Page(s):
    698-708

    In this paper, we first propose two batch blind source separation and equalization algorithms based on support vector regression (SVR) for linear time-invariant multiple input multiple output (MIMO) systems. The proposed algorithms combine the conventional cost function of SVR with error functions of classical on-line algorithm for blind equalization: both error functions of constant modulus algorithm (CMA) and radius directed algorithm (RDA) are contained in the penalty term of SVR. To recover all sources simultaneously, the cross-correlations of equalizer outputs are included in the cost functions. Simulation experiments show that the proposed algorithms can recover all sources successfully and compensate channel distortion simultaneously. With the use of iterative re-weighted least square (IRWLS) solution of SVR, the proposed algorithms exhibit low computational complexity. Compared with traditional algorithms, the new algorithms only require fewer samples to achieve convergence and perform a lower residual interference. For multilevel signals, the single algorithms based on constant modulus property usually show a relatively high residual error, then we propose two dual-mode blind source separation and equalization schemes. Between them, the dual-mode scheme based on SVR merely requires fewer samples to achieve convergence and further reduces the residual interference.

  • Polynomial-Space Exact Algorithms for the Bipartite Traveling Salesman Problem

    Mohd SHAHRIZAN OTHMAN  Aleksandar SHURBEVSKI  Hiroshi NAGAMOCHI  

     
    LETTER

      Pubricized:
    2017/12/19
      Vol:
    E101-D No:3
      Page(s):
    611-612

    Given an edge-weighted bipartite digraph G=(A,B;E), the Bipartite Traveling Salesman Problem (BTSP) asks to find the minimum cost of a Hamiltonian cycle of G, or determine that none exists. When |A|=|B|=n, the BTSP can be solved using polynomial space in O*(42nnlog n) time by using the divide-and-conquer algorithm of Gurevich and Shelah (SIAM Journal of Computation, 16(3), pp.486-502, 1987). We adapt their algorithm for the bipartite case, and show an improved time bound of O*(42n), saving the nlog n factor.

  • Deep Neural Network Based Monaural Speech Enhancement with Low-Rank Analysis and Speech Present Probability

    Wenhua SHI  Xiongwei ZHANG  Xia ZOU  Meng SUN  Wei HAN  Li LI  Gang MIN  

     
    LETTER-Noise and Vibration

      Vol:
    E101-A No:3
      Page(s):
    585-589

    A monaural speech enhancement method combining deep neural network (DNN) with low rank analysis and speech present probability is proposed in this letter. Low rank and sparse analysis is first applied on the noisy speech spectrogram to get the approximate low rank representation of noise. Then a joint feature training strategy for DNN based speech enhancement is presented, which helps the DNN better predict the target speech. To reduce the residual noise in highly overlapping regions and high frequency domain, speech present probability (SPP) weighted post-processing is employed to further improve the quality of the speech enhanced by trained DNN model. Compared with the supervised non-negative matrix factorization (NMF) and the conventional DNN method, the proposed method obtains improved speech enhancement performance under stationary and non-stationary conditions.

  • Low Complexity Compressive Sensing Greedy Detection of Generalized Quadrature Spatial Modulation

    Rajesh RAMANATHAN  Partha Sharathi MALLICK  Thiruvengadam SUNDARAJAN JAYARAMAN  

     
    LETTER-Communication Theory and Signals

      Vol:
    E101-A No:3
      Page(s):
    632-635

    In this letter, we propose a generalized quadrature spatial modulation technique (GQSM) which offers additional bits per channel use (bpcu) gains and a low complexity greedy detector algorithm, structured orthogonal matching pursuit (S-OMP)- GQSM, based on compressive sensing (CS) framework. Simulation results show that the bit error rate (BER) performance of the proposed greedy detector is very close to maximum likelihood (ML) and near optimal detectors based on convex programming.

  • Efficient Early Termination Criterion for ADMM Penalized LDPC Decoder

    Biao WANG  Xiaopeng JIAO  Jianjun MU  Zhongfei WANG  

     
    LETTER-Coding Theory

      Vol:
    E101-A No:3
      Page(s):
    623-626

    By tracking the changing rate of hard decisions during every two consecutive iterations of the alternating direction method of multipliers (ADMM) penalized decoding, an efficient early termination (ET) criterion is proposed to improve the convergence rate of ADMM penalized decoder for low-density parity-check (LDPC) codes. Compared to the existing ET criterion for ADMM penalized decoding, the proposed method can reduce the average number of iterations significantly at low signal-to-noise ratios with negligible performance degradation.

  • A Network-Based Identifier Locator Separation Scheme for VANETs

    Ju-Ho CHOI  Jung-Hwan CHA  Youn-Hee HAN  Sung-Gi MIN  

     
    PAPER-Network

      Pubricized:
    2017/08/24
      Vol:
    E101-B No:3
      Page(s):
    785-794

    The integration of VANETs with Internet is required if vehicles are to access IP-based applications. A vehicle must have an IP address, and the IP mobility service should be supported during the movement of the vehicle. VANET standards such as WAVE or C-ITS use IPv6 address auto configuration to allocate an IP address to a vehicle. In C-ITS, NEMO-BS is used to support IP mobility. The vehicle moves rapidly, so reallocation of IP address as well as binding update occurs frequently. The vehicle' communication, however, may be disrupted for a considerable amount of time, and the packet loss occurs during these events. Also, the finding of the home address of the peer vehicle is not a trivial matter. We propose a network based identifier locator separation scheme for VANETs. The scheme uses a vehicle identity based address generation scheme. It eliminates the frequent address reallocation and simplifies the finding of the peer vehicle IP address. In the scheme, a network entity tracks the vehicles in its coverage and the vehicles share the IP address of the network entity for their locators. The network entity manages the mapping between the vehicle's identifier and its IP address. The scheme excludes the vehicles from the mobility procedure, so a vehicle needs only the standard IPv6 protocol stack, and mobility signaling does not occur on the wireless link. The scheme also supports seamlessness, so packet loss is mitigated. The results of a simulation show that the vehicles experience seamless packet delivery.

  • On the Second Separating Redundancy of LDPC Codes from Finite Planes

    Haiyang LIU  Yan LI  Lianrong MA  

     
    LETTER-Coding Theory

      Vol:
    E101-A No:3
      Page(s):
    617-622

    The separating redundancy is an important concept in the analysis of the error-and-erasure decoding of a linear block code using a parity-check matrix of the code. In this letter, we derive new constructive upper bounds on the second separating redundancies of low-density parity-check (LDPC) codes constructed from projective and Euclidean planes over the field Fq with q even.

  • Efficient Reformulation of 1-Norm Ranking SVM

    Daiki SUEHIRO  Kohei HATANO  Eiji TAKIMOTO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/12/04
      Vol:
    E101-D No:3
      Page(s):
    719-729

    Finding linear functions that maximize AUC scores is important in ranking research. A typical approach to the ranking problem is to reduce it to a binary classification problem over a new instance space, consisting of all pairs of positive and negative instances. Specifically, this approach is formulated as hard or soft margin optimization problems over pn pairs of p positive and n negative instances. Solving the optimization problems directly is impractical since we have to deal with a sample of size pn, which is quadratically larger than the original sample size p+n. In this paper, we reformulate the ranking problem as variants of hard and soft margin optimization problems over p+n instances. The resulting classifiers of our methods are guaranteed to have a certain amount of AUC scores.

  • GPU-Accelerated Stochastic Simulation of Biochemical Networks

    Pilsung KANG  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2017/12/20
      Vol:
    E101-D No:3
      Page(s):
    786-790

    We present a GPU (graphics processing unit) accelerated stochastic algorithm implementation for simulating biochemical reaction networks using the latest NVidia architecture. To effectively utilize the massive parallelism offered by the NVidia Pascal hardware, we apply a set of performance tuning methods and guidelines such as exploiting the architecture's memory hierarchy in our algorithm implementation. Based on our experimentation results as well as comparative analysis using CPU-based implementations, we report our initial experiences on the performance of modern GPUs in the context of scientific computing.

  • Multiple Matrix Rank Minimization Approach to Audio Declipping

    Ryohei SASAKI  Katsumi KONISHI  Tomohiro TAKAHASHI  Toshihiro FURUKAWA  

     
    LETTER-Speech and Hearing

      Pubricized:
    2017/12/06
      Vol:
    E101-D No:3
      Page(s):
    821-825

    This letter deals with an audio declipping problem and proposes a multiple matrix rank minimization approach. We assume that short-time audio signals satisfy the autoregressive (AR) model and formulate the declipping problem as a multiple matrix rank minimization problem. To solve this problem, an iterative algorithm is provided based on the iterative partial matrix shrinkage (IPMS) algorithm. Numerical examples show its efficiency.

  • Action Recognition Using Low-Rank Sparse Representation

    Shilei CHENG  Song GU  Maoquan YE  Mei XIE  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2017/11/24
      Vol:
    E101-D No:3
      Page(s):
    830-834

    Human action recognition in videos draws huge research interests in computer vision. The Bag-of-Word model is quite commonly used to obtain the video level representations, however, BoW model roughly assigns each feature vector to its nearest visual word and the collection of unordered words ignores the interest points' spatial information, inevitably causing nontrivial quantization errors and impairing improvements on classification rates. To address these drawbacks, we propose an approach for action recognition by encoding spatio-temporal log Euclidean covariance matrix (ST-LECM) features within the low-rank and sparse representation framework. Motivated by low rank matrix recovery, local descriptors in a spatial temporal neighborhood have similar representation and should be approximately low rank. The learned coefficients can not only capture the global data structures, but also preserve consistent. Experimental results showed that the proposed approach yields excellent recognition performance on synthetic video datasets and are robust to action variability, view variations and partial occlusion.

  • The Estimation of Satellite Attitude Using the Radar Cross Section Sequence and Particle Swarm Optimization

    Jidong QIN  Jiandong ZHU  Huafeng PENG  Tao SUN  Dexiu HU  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:3
      Page(s):
    595-599

    The existing methods to estimate satellite attitude by using radar cross section (RCS) sequence suffer from problems such as low precision, computation complexity, etc. To overcome these problems, a novel model of satellite attitude estimation by the local maximum points of the RCS sequence is established and can reduce the computational time by downscaling the dimension of the feature vector. Moreover, a particle swarm optimization method is adopted to improve efficiency of computation. Numerical simulations show that the proposed method is robust and efficient.

  • An Efficient Parallel Coding Scheme in Erasure-Coded Storage Systems

    Wenrui DONG  Guangming LIU  

     
    PAPER-Computer System

      Pubricized:
    2017/12/12
      Vol:
    E101-D No:3
      Page(s):
    627-643

    Erasure codes have been considered as one of the most promising techniques for data reliability enhancement and storage efficiency in modern distributed storage systems. However, erasure codes often suffer from a time-consuming coding process which makes them nearly impractical. The opportunity to solve this problem probably rely on the parallelization of erasure-code-based application on the modern multi-/many-core processors to fully take advantage of the adequate hardware resources on those platforms. However, the complicated data allocation and limited I/O throughput pose a great challenge on the parallelization. To address this challenge, we propose a general multi-threaded parallel coding approach in this work. The approach consists of a general multi-threaded parallel coding model named as MTPerasure, and two detailed parallel coding algorithms, named as sdaParallel and ddaParallel, respectively, adapting to different I/O circumstances. MTPerasure is a general parallel coding model focusing on the high level data allocation, and it is applicable for all erasure codes and can be implemented without any modifications of the low level coding algorithms. The sdaParallel divides the data into several parts and the data parts are allocated to different threads statically in order to eliminate synchronization latency among multiple threads, which improves the parallel coding performance under the dummy I/O mode. The ddaParallel employs two threads to execute the I/O reading and writing on the basis of small pieces independently, which increases the I/O throughput. Furthermore, the data pieces are assigned to the coding thread dynamically. A special thread scheduling algorithm is also proposed to reduce thread migration latency. To evaluate our proposal, we parallelize the popular open source library jerasure based on our approach. And a detailed performance comparison with the original sequential coding program indicates that the proposed parallel approach outperforms the original sequential program by an extraordinary speedups from 1.4x up to 7x, and achieves better utilization of the computation and I/O resources.

  • The Declarative and Reusable Path Composition for Semantic Web-Driven SDN

    Xi CHEN  Tao WU  Lei XIE  

     
    PAPER-Network

      Pubricized:
    2017/08/29
      Vol:
    E101-B No:3
      Page(s):
    816-824

    The centralized controller of SDN enables a global topology view of the underlying network. It is possible for the SDN controller to achieve globally optimized resource composition and utilization, including optimized end-to-end paths. Currently, resource composition in SDN arena is usually conducted in an imperative manner where composition logics are explicitly specified in high level programming languages. It requires strong programming and OpenFlow backgrounds. This paper proposes declarative path composition, namely Compass, which offers a human-friendly user interface similar to natural language. Borrowing methodologies from Semantic Web, Compass models and stores SDN resources using OWL and RDF, respectively, to foster the virtualized and unified management of the network resources regardless of the concrete controller platform. Besides, path composition is conducted in a declarative manner where the user merely specifies the composition goal in the SPARQL query language instead of explicitly specifying concrete composition details in programming languages. Composed paths are also reused based on similarity matching, to reduce the chance of time-consuming path composition. The experiment results reflect the applicability of Compass in path composition and reuse.

  • An Efficient Content Search Method Based on Local Link Replacement in Unstructured Peer-to-Peer Networks

    Nagao OGINO  Takeshi KITAHARA  

     
    PAPER-Network

      Pubricized:
    2017/09/14
      Vol:
    E101-B No:3
      Page(s):
    740-749

    Peer-to-peer overlay networks can easily achieve a large-scale content sharing system on the Internet. Although unstructured peer-to-peer networks are suitable for finding entire partial-match content, flooding-based search is an inefficient way to obtain target content. When the shared content is semantically specified by a great number of attributes, it is difficult to derive the semantic similarity of peers beforehand. This means that content search methods relying on interest-based locality are more advantageous than those based on the semantic similarity of peers. Existing search methods that exploit interest-based locality organize multiple peer groups, in each of which peers with common interests are densely connected using short-cut links. However, content searches among multiple peer groups are still inefficient when the number of incident links at each peer is limited due to the capacity of the peer. This paper proposes a novel content search method that exploits interest-based locality. The proposed method can organize an efficient peer-to-peer network similar to the semantic small-world random graph, which can be organized by the existing methods based on the semantic similarity of peers. In the proposed method, topology transformation based on local link replacement maintains the numbers of incident links at all the peers. Simulation results confirm that the proposed method can achieve a significantly higher ratio of obtainable partial-match content than existing methods that organize peer groups.

361-380hit(2741hit)