The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Q(6809hit)

2421-2440hit(6809hit)

  • Complex Sensor Event Processing for Business Process Integration

    Pablo Rosales TEJADA  Jae-Yoon JUNG  

     
    LETTER

      Vol:
    E93-B No:11
      Page(s):
    2976-2979

    Ubiquitous technologies such as sensor network and RFID have enabled companies to realize more rapid and agile manufacturing and service systems. In this paper, we addresses how the huge amount of real-time events coming from these devices can be filtered and integrated to business process such as manufacturing, logistics, and supply chain process. In particular, we focus on complex event processing of sensor and RFID events in order to integrate them to business rules in business activities. We also illustrate a ubiquitous event processing system, named ueFilter, which helps to filter and aggregate sensor event, to detect event patterns from sensors and RFID by means of event pattern languages (EPL), and trigger event-condition-action (ECA) in logistics processes.

  • Some Properties of Logistic Maps over Integers

    Takeru MIYAZAKI  Shunsuke ARAKI  Satoshi UEHARA  

     
    PAPER-Sequences

      Vol:
    E93-A No:11
      Page(s):
    2258-2265

    The logistic map is a chaotic mapping. Although several studies have examined logistic maps over real domains with infinite/finite precisions, there has been little analysis of the logistic map over integers. Focusing on differences between the logistic map over the real domain with infinite precision and the logistic map over integers with finite precision, we herein show the characteristic properties of the logistic map over integers and discuss the sequences generated by the map.

  • A Self-Calibration Technique for Capacitor Mismatch Errors of an Interleaved SAR ADC

    Yasuhide KURAMOCHI  Masayuki KAWABATA  Kouichiro UEKUSA  Akira MATSUZAWA  

     
    PAPER-Electronic Circuits

      Vol:
    E93-C No:11
      Page(s):
    1630-1637

    We present self-calibration techniques for an interleaved SAR (Successive Approximation Register) ADC. The calibration technique is based on hardware corrections for linearity of single stage, gain error and mismatch errors of parallel ADCs. The 4-interleaved 11-bit ADC has been fabricated in a 0.18-µm CMOS process. Using the calibrations, measurement and calculation results show that the differences of ramp characteristic among the 4-interleaving ADC can be decresased to under 0.63 LSB.

  • Autocorrelation of New Generalized Cyclotomic Sequences of Period pn

    Seok-Yong JIN  Young-Joon KIM  Hong-Yeop SONG  

     
    LETTER-Sequences

      Vol:
    E93-A No:11
      Page(s):
    2345-2348

    In this paper, we calculate autocorrelation of new generalized cyclotomic sequences of period pn for any n > 0, where p is an odd prime number.

  • A Relay Selection Based on Eigenvalue Decomposition for Cooperative Communications in Indoor Ubiquitous Sensor Networks

    Sekchin CHANG  

     
    LETTER

      Vol:
    E93-B No:11
      Page(s):
    2967-2970

    A new best-relay selection scheme is proposed in this letter in order to maintain a reliable cooperative communications for ubiquitous sensor networks in indoor environments. The suggested technique relies on eigenvalue decomposition to select the best relay. The simulation results confirm that the performance of the proposed approach is better than that of the previous scheme in indoor environments.

  • A New Set of Optimal Frequency-Hopping Sequences

    Fang LIU  Daiyuan PENG  Xiaohu TANG  

     
    LETTER-Sequences

      Vol:
    E93-A No:11
      Page(s):
    2332-2336

    In frequency-hopping (FH) multiple access systems, frequency-hopping sequences (FHSs) with optimal Hamming correlation properties are needed. Based on the d-form functions with ideal autocorrelation properties, a new set of FHSs is constructed. The new FHS set is optimal with respect to the Peng-Fan bounds and each FHS in the set is optimal with respect to the Lempel-Greenberger bound.

  • A Generalized Construction of Optimal Zero-Correlation Zone Sequence Set from a Perfect Sequence Pair

    Takafumi HAYASHI  Shinya MATSUFUJI  

     
    LETTER-Sequences

      Vol:
    E93-A No:11
      Page(s):
    2337-2344

    The present paper introduces a new approach to the construction of a sequence set with a zero-correlation zone (ZCZ). This sequence set is referred to as a ZCZ sequence set. The proposed sequence construction generates a ZCZ sequence set from a perfect sequence pair or a single perfect sequence. The proposed method can generate an optimal ZCZ sequence set, the member size of which reaches the theoretical bound.

  • Performance of DS/SS System Using Pseudo-Ternary M-Sequences

    Ryo ENOMOTO  Hiromasa HABUCHI  Koichiro HASHIURA  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E93-A No:11
      Page(s):
    2299-2306

    In this paper, newly-found properties of the pseudo-ternary maximum-length shift register sequences (pseudo-ternary M-sequences) are described. In particular, the balance properties, the run-length distribution, the cross-correlation properties, and the decimation relationships are shown. The pseudo-ternary M-sequence is obtained by subtracting the one-chip shifted version from the {+1,-1}-valued M-sequence. Moreover, in this paper, performances of the direct sequence spread spectrum (DS/SS) system using the pseudo-ternary M-sequence are analyzed. In the performance evaluation, tracking error performance (jitter) and bit error rate (BER) performance that takes the jitter into account in DS/SS system with a pseudo-ternary M-sequence non-coherent DLL are evaluated. Using the pseudo-ternary M-sequence instead of the conventional M-sequences can improve the tracking error performance about 2.8 [dB]. Moreover, BER of the DS/SS system using the pseudo-ternary M-sequence is superior about 0.8 [dB] to that using the {+1,-1}-valued M-sequence.

  • Measurement of Complex Permittivity for Liquid Materials Using the Open-Ended Cut-Off Waveguide Reflection Method

    Kouji SHIBATA  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E93-C No:11
      Page(s):
    1621-1629

    Various studies of specific absorption rates (SARs) using liquid phantoms imitating human body tissues have been widely carried out in electromagnetic compatibility (EMC) research fields. In order to establish accurate SARs for measurement, a faithful mockup of human body tissue is needed. Therefore, knowledge of the accurate measurement of sample materials with high permittivity and high loss is very important. In this study, the complex permittivity of tap water, ethanol, methanol and isopropanol is measured by the open-ended cut-off circular waveguide reflection method. The effectiveness of the method presented here of measuring a liquid phantom with high-permittivity and high-loss is also confirmed by comparing the measured results with the results obtained by the TM010 circular cavity resonator method. At this time, the effects on the input impedance under variations of the insertion length and termination conditions were studied. Then the complex permittivity of tap water, ethanol, methanol and isopropanol was measured at frequencies ranging from 0.5 to 3.0 GHz using the measurement procedure above. As a result, we confirmed the frequency characteristics of the complex permittivity for a wide variety of high-loss liquid materials.

  • A Retransmission-Enhanced Duty-Cycle MAC Protocol Based on the Channel Quality for Wireless Sensor Networks

    Kisuk KWEON  Hanjin LEE  Hyunsoo YOON  

     
    LETTER-Network

      Vol:
    E93-B No:11
      Page(s):
    3156-3160

    Duty-cycle MAC protocols have been proposed for wireless sensor networks (WSNs) to reduce the energy consumed by idle listening, but they introduce significant end-to-end delivery latency. Several works have attempted to mitigate this latency, but they still have a problem on handling the packet loss. The quality of the wireless channel in WSNs is quite bad, so packets are frequently lost. In this letter, we present a novel duty-cycle MAC protocol, called REMAC (Retransmission-Enhanced duty-cycle MAC), which exploits both the network layer and the physical layer information. REMAC estimates the quality of the wireless channel and properly reserves the wireless channel to handle the packet loss. It can reduce the end-to-end packet delivery latency caused by the packet loss without sacrificing the energy efficiency. Simulation results show that REMAC outperforms RMAC in terms of the end-to-end packet delivery latency.

  • Peak-to-Average Power Ratio (PAPR) Reduction by Pulse Shaping Using the K-Exponential Filter

    Yi-De WEI  Yung-Fang CHEN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:11
      Page(s):
    3180-3183

    A K-exponential filter is derived and utilized for pulse shaping to reduce peak to average power ratio (PAPR) without intersymbol interference (ISI). While keeping the same bandwidth, the frequency responses of the filters vary with different values of the parameter k. The minimum PAPR is associated with a value of the parameter k when the roll-off factor α is specified. Simulations show that the PAPR can be reduced compared with the raised cosine (RC) filter in various systems. The derived pulse shaping filters also provide better performance in PAPR reduction compared with the existing filters.

  • Multiplier-less and Table-less Linear Approximation for Square-Related Functions

    In-Cheol PARK  Tae-Hwan KIM  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E93-D No:11
      Page(s):
    2979-2988

    Square-related functions such as square, inverse square, square-root and inverse square-root operations are widely used in digital signal processing and digital communication algorithms, and their efficient realizations are commonly required to reduce the hardware complexity. In the implementation point of view, approximate realizations are often desired if they do not degrade performance significantly. In this paper, we propose new linear approximations for the square-related functions. The traditional linear approximations need multipliers to calculate slope offsets and tables to store initial offset values and slope values, whereas the proposed approximations exploit the inherent properties of square-related functions to linearly interpolate with only simple operations, such as shift, concatenation and addition, which are usually supported in modern VLSI systems. Regardless of the bit-width of the number system, more importantly, the maximum relative errors of the proposed approximations are bounded to 6.25% and 3.13% for square and square-root functions, respectively. For inverse square and inverse square-root functions, the maximum relative errors are bounded to 12.5% and 6.25% if the input operands are represented in 20 bits, respectively.

  • Design and Analysis on Macro Diversity Scheme for Broadcast Services in Mobile Cellular Systems

    Yang LIU  Hui ZHAO  Yunchuan YANG  Wenbo WANG  Kan ZHENG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:11
      Page(s):
    3113-3120

    Recently, broadcast services are introduced in cellular networks and macro diversity is an effective way to combat fading. In this paper, we propose a kind of distributed space-time block codes (STBCs) for macro diversity which is constructed from the total antennas of multiple cooperating base stations, and all the antennas form an equivalent multiple input multiple output (MIMO) system. This code is termed High-Dimension-Full-Rate-Quasi-Orthogonal STBC (HDFR-QOSTBC) which can be characterized as: (1) It can be applied with any number of transmit antennas especially when the number of transmit antennas is large; (2) The code is with full transmit rate of one; (3) The Maximum Likelihood (ML) decoding complexity of this code is controllable and limited to Nt/2-symbol-decodable for total Nt transmit antennas. Then, we completely analyze the structure of the equivalent channel for the kind of codes and reveal a property that the eigenvectors of the equivalent channel are constant and independent from the channel realization, and this characteristic can be exploited for a new transmission structure with single-symbol linear decoder. Furthermore, we analyze different macro diversity schemes and give a performance comparison. The simulation results show that the proposed scheme is practical for the broadcast systems with significant performance improvement comparing with soft-combination and cyclic delay diversity (CDD) methods.

  • Towards a Fairness Multimedia Transmission Using Layered-Based Multicast Protocol

    Heru SUKOCO  Yoshiaki HORI  Hendrawan   Kouichi SAKURAI  

     
    PAPER

      Vol:
    E93-D No:11
      Page(s):
    2953-2961

    The distribution of streaming multicast and real time audio/video applications in the Internet has been quickly increased in the Internet. Commonly, these applications rarely use congestion control and do not fairly share provided network capacity with TCP-based applications such as HTTP, FTP and emails. Therefore, Internet communities will be threatened by the increase of non-TCP-based applications that likely cause a significant increase of traffics congestion and starvation. This paper proposes a set of mechanisms, such as providing various data rates, background traffics, and various scenarios, to act friendly with TCP when sending multicast traffics. By using 8 scenarios of simulations, we use 6 layered multicast transmissions with background traffic Pareto with the shape factor 1.5 to evaluate performance metrics such as throughput, delay/latency, jitter, TCP friendliness, packet loss ratio, and convergence time. Our study shows that non TCP traffics behave fairly and respectful of the co-existent TCP-based applications that run on shared link transmissions even with background traffic. Another result shows that the simulation has low values on throughput, vary in jitter (0-10 ms), and packet loss ratio > 3%. It was also difficult to reach convergence time quickly when involving only non TCP traffics.

  • Interference Coordination in Compact Frequency Reuse for Multihop Cellular Networks

    Yue ZHAO  Xuming FANG  Zhengguang ZHAO  

     
    PAPER-Mobile Information Network and Personal Communications

      Vol:
    E93-A No:11
      Page(s):
    2312-2319

    Continuously increasing the bandwidth to enhance the capacity is impractical because of the scarcity of spectrum availability. Fortunately, on the basis of the characteristics of the multihop cellular networks (MCNs), a new compact frequency reuse scheme has been proposed to provide higher spectrum utilization efficiency and larger capacity without increasing the cost on network. Base stations (BSs) and relay stations (RSs) could transmit simultaneously on the same frequency according to the compact frequency reuse scheme. In this situation, however, mobile stations (MSs) near the coverage boundary will suffer serious interference and their traffic quality can hardly be guaranteed. In order to mitigate the interference while maintaining high spectrum utilization efficiency, this paper introduces a fractional frequency reuse (FFR) scheme into multihop cellular networks, in which the principle of FFR scheme and characteristics of frequency resources configurations are described, then the transmission (Tx) power consumption of BS and RSs is analyzed. The proposed scheme can both meet the requirement of high traffic load in future cellular system and maximize the benefit by reducing the Tx power consumption. Numerical results demonstrate that the proposed FFR in compact frequency reuse achieves higher cell coverage probability and larger capacity with respect to the conventional schemes.

  • Privacy Preserving Frequency Mining in 2-Part Fully Distributed Setting

    The Dung LUONG  Tu Bao HO  

     
    PAPER

      Vol:
    E93-D No:10
      Page(s):
    2702-2708

    Recently, privacy preservation has become one of the key issues in data mining. In many data mining applications, computing frequencies of values or tuples of values in a data set is a fundamental operation repeatedly used. Within the context of privacy preserving data mining, several privacy preserving frequency mining solutions have been proposed. These solutions are crucial steps in many privacy preserving data mining tasks. Each solution was provided for a particular distributed data scenario. In this paper, we consider privacy preserving frequency mining in a so-called 2-part fully distributed setting. In this scenario, the dataset is distributed across a large number of users in which each record is owned by two different users, one user only knows the values for a subset of attributes, while the other knows the values for the remaining attributes. A miner aims to compute the frequencies of values or tuples of values while preserving each user's privacy. Some solutions based on randomization techniques can address this problem, but suffer from the tradeoff between privacy and accuracy. We develop a cryptographic protocol for privacy preserving frequency mining, which ensures each user's privacy without loss of accuracy. The experimental results show that our protocol is efficient as well.

  • Inverse QR 2D-RLS Adaptive Channel Estimation for OFDM Systems

    Akshay SONI  Tanvi SHARMA  Vijaykumar CHAKKA  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:10
      Page(s):
    2822-2825

    This letter proposes Inverse QR two-dimensional Recursive Least Square (IQR-2D-RLS) adaptive channel estimation for Orthogonal Frequency Division Multiplexing (OFDM) systems (using Givens Rotations and Householder Transformations). It is more stable numerically than 2D-RLS algorithm. MATLAB simulations show that BER performance of IQR-2D-RLS algorithm is similar to that of 2D-RLS algorithm.

  • Carrier Frequency Offset Estimation for OFDM Systems by Histogram

    Ju-Ya CHEN  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E93-B No:10
      Page(s):
    2766-2768

    Carrier frequency offset may distort the orthogonality of the subcarriers in OFDM systems and it must be estimated and compensated to maintain the system performance. A blind carrier frequency offset estimator based on the histogram of the received signal's phase is proposed in this letter. The proposed estimator can operate under additive white Gaussian noise and multipath channels without known training signal, redundant guard interval, and virtual carrier. Compared to subspace-based blind estimators, the proposed estimator can provide better mean-square-error performance.

  • A Joint Synchronization and Demodulation Scheme for UWB Systems

    Yongwei QIAO  Tiejun LV  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:10
      Page(s):
    2742-2752

    In this paper, a joint blind synchronization and demodulation scheme is developed for ultra-wideband (UWB) impulse radio systems. Based on the prior knowledge of the direct-sequence (DS) spread codes, the proposed approach can achieve frame-level synchronization with the help of frame-rate samples. Taking advantage of the periodicity of the DS spread codes, the frame-level synchronization can be carried out even in one symbol interval. On the other hand, after timing acquisition, these frame-rate samples can be re-utilized also for demodulation. Thus the acquisition time and the implementation complexity are reduced considerably. The performance improvement can be justified by both theoretical analysis and simulation results, in terms of acquisition probability and bit error rate (BER).

  • Equivalent Noise Temperature Representation for Scaled MOSFETs

    Hiroshi SHIMOMURA  Kuniyuki KAKUSHIMA  Hiroshi IWAI  

     
    LETTER-Semiconductor Materials and Devices

      Vol:
    E93-C No:10
      Page(s):
    1550-1552

    We proposed a novel representation of the thermal noise for scaled MOSFETs by applying an extended van der Ziel's model. A comparison between the proposed representation and Pospieszalski's model is also performed. We confirmed that the representation of drain noise temperature, Td corresponds to the electron temperature in a gradual channel region.

2421-2440hit(6809hit)