The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Q(6809hit)

2601-2620hit(6809hit)

  • Hybrid ARQ Error-Controlling Scheme for Robust and Efficient Transmission of UWB Body Area Networks

    Haruka SUZUKI  Marco HERNANDEZ  Ryuji KOHNO  

     
    PAPER

      Vol:
    E93-B No:4
      Page(s):
    826-832

    This paper presents hybrid type-II automatic repeat request (H-ARQ) for wireless wearable body area networks (BANs) based on ultra wideband (UWB) technology. The proposed model is based on three schemes, namely, high rate optimized rate compatible punctured convolutional codes (HRO-RCPC), Reed Solomon (RS) invertible codes and their concatenation. Forward error correction (FEC) coding is combined with simple cyclic redundancy check (CRC) error detection. The performance is investigated for two channels: CM3 (on-body to on-body) and CM4 (on-body to a gateway) scenarios of the IEEE802.15.6 BAN channel models for BANs. It is shown that the improvement in performance in terms of throughput and error protection robustness is very significant. Thus, the proposed H-ARQ schemes can be employed and optimized to suit medical and non-medical applications. In particular we propose the use of FEC coding for non-medical applications as those require less stringent quality of service (QoS), while the incremental redundancy and ARQ configuration is utilized only for medical applications. Thus, higher QoS is guaranteed for medical application of BANs while allowing coexistence with non-medical applications.

  • Performance of Robust OFDM Channel Estimation with Strong Interference Detector

    Tsui-Tsai LIN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:4
      Page(s):
    1053-1056

    In this letter, DFT-based channel estimation (CE) with a strong interference detector is proposed for OFDM systems. Computer simulations demonstrate that the proposed scheme achieves similar performance to an interference-free system and is a significant enhancement over conventional methods.

  • A 1-V, 6.72-mW, 5.8-GHz CMOS Injection-Locked Quadrature Local Oscillator with Stacked Transformer Feedback VCO

    Tzuen-Hsi HUANG  Yuan-Ru TSENG  Shang-Hsun WU  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E93-C No:4
      Page(s):
    505-513

    This paper presents a real integration of a 5.8-GHz injection-locked quadrature local oscillator that includes two LC-tuned injection-locked frequency dividers (ILFDs) and a wide-tuning stacked-transformer feedback voltage-controlled oscillator (VCO) operated in double frequency. A symmetric differential stacked-transformer with a high coupling factor and a high quality factor is used as a feedback component for the wide-tuning VCO design. The wide tuning range, which is greater than three times the desired bandwidth, is achieved by selecting a greater tuning capacitance ratio available from high-voltage N-type accumulation-mode MOS varactors and a smaller self-inductance stacked-transformer. Since the quality factors of the LC-resonator components can sustain at a high enough level, the wide-tuning VCO does not suffer from the phase noise degradation too much. In addition, the tuning range of the local oscillator is extended simultaneously by utilizing switched capacitor arrays (SCAs) in the ILFDs. The circuit is implemented by TSMC's 0.18-µm RF CMOS technology. At a 1-V power supply, the whole integrated circuit dissipates 6.72 mW (4.05 mW for the VCO and 2.67 mW for the two ILFDs). The total tuning range frequency is about 500 MHz (from 5.54 GHz to 6.04 GHz) when the tuning voltage Vtune ranges from 0 V to 1.8 V. At around the output frequency of 5.77 GHz (at Vtune = 0.5 V), the measured phase noise of this local oscillator is -119.4 dBc/Hz at a 1-MHz offset frequency. This work satisfies the specification requirement for IEEE 802.11a UNII-3 band application. The corresponding figure-of-merit (FOM) calculated is 186.3 dB.

  • A Support Method with Changeable Training Strategies Based on Mutual Adaptation between a Ubiquitous Pet and a Learner

    Xianzhi YE  Lei JING  Mizuo KANSEN  Junbo WANG  Kaoru OTA  Zixue CHENG  

     
    PAPER-Educational Technology

      Vol:
    E93-D No:4
      Page(s):
    858-872

    With the progress of ubiquitous technology, ubiquitous learning presents new opportunities to learners. Situations of a learner can be grasped through analyzing the learner's actions collected by sensors, RF-IDs, or cameras in order to provide support at proper time, proper place, and proper situation. Training for acquiring skills and enhancing physical abilities through exercise and experience in the real world is an important domain in u-learning. A training program may last for several days and has one or more training units (exercises) for a day. A learner's performance in a unit is considered as short term state. The performance in a series of units may change with patterns: progress, plateau, and decline. Long term state in a series of units is accumulatively computed based on short term states. In a learning/training program, it is necessary to apply different support strategies to adapt to different states of the learner. Adaptation in learning support is significant, because a learner loses his/her interests easily without adaptation. Systems with the adaptive support usually provide stimulators to a learner, and a learner can have a great motivation in learning at beginning. However, when the stimulators reach some levels, the learner may lose his/her motivation, because the long term state of the learner changes dynamically, which means a progress state may change to a plateau state or a decline state. In different long term learning states, different types of stimulators are needed. However, the stimulators and advice provided by the existing systems are monotonic without changeable support strategies. We propose a mutual adaptive support. The mutual adaptation means each of the system and the learner has their own states. On one hand, the system tries to change its state to adapt to the learner's state for providing adaptive support. On the other hand, the learner can change its performance following the advice given based on the state of the system. We create a ubiquitous pet (u-pet) as a metaphor of our system. A u-pet is always with the learner and encourage the leaner to start training at proper time and to do training smoothly. The u-pet can perform actions with the learner in training, change its own attributes based on the learner's attributes, and adjust its own learning rate by a learning function. The u-pet grasps the state of the learner and adopts different training support strategies to the learner's training based on the learner's short and long term states.

  • Improving Reliability of Spectrum Analysis for Software Quality Requirements Using TCM

    Haruhiko KAIYA  Masaaki TANIGAWA  Shunichi SUZUKI  Tomonori SATO  Akira OSADA  Kenji KAIJIRI  

     
    PAPER-Requirements Engineering

      Vol:
    E93-D No:4
      Page(s):
    702-712

    Quality requirements are scattered over a requirements specification, thus it is hard to measure and trace such quality requirements to validate the specification against stakeholders' needs. We proposed a technique called "spectrum analysis for quality requirements" which enabled analysts to sort a requirements specification to measure and track quality requirements in the specification. In the same way as a spectrum in optics, a quality spectrum of a specification shows a quantitative feature of the specification with respect to quality. Therefore, we can compare a specification of a system to another one with respect to quality. As a result, we can validate such a specification because we can check whether the specification has common quality features and know its specific features against specifications of existing similar systems. However, our first spectrum analysis for quality requirements required a lot of effort and knowledge of a problem domain and it was hard to reuse such knowledge to reduce the effort. We thus introduce domain knowledge called term-characteristic map (TCM) to reuse the knowledge for our quality spectrum analysis. Through several experiments, we evaluate our spectrum analysis, and main finding are as follows. First, we confirmed specifications of similar systems have similar quality spectra. Second, results of spectrum analysis using TCM are objective, i.e., different analysts can generate almost the same spectra when they analyze the same specification.

  • Queueing Delay and Energy Efficiency Analyses of Sleep Based Power Saving Mechanism

    Fan ZHU  Yiqun WU  Zhisheng NIU  

     
    LETTER-Energy in Electronics Communications

      Vol:
    E93-B No:4
      Page(s):
    1069-1072

    In wireless networks, sleep mode based power saving mechanisms can reduce the energy consumption at the expense of additional packet delay. This letter analyzes its packet queueing delay and wireless terminals' energy efficiency. Based on the analysis, optimal sleep window size can be derived to optimize terminal energy efficiency with delay constraint.

  • Superconductive Digital Magnetometers with Single-Flux-Quantum Electronics Open Access

    Pascal FEBVRE  Torsten REICH  

     
    INVITED PAPER

      Vol:
    E93-C No:4
      Page(s):
    445-452

    Superconducting Quantum Interference Devices (SQUIDs) are known to be the most sensitive magnetometers, used in a wide range of applications like biomagnetism, geomagnetism, Non Destructive Evaluation (NDE), metrology or fundamental science. For all these applications, the SQUID sensor is used in analog mode and associated with a carefully designed room-temperature control and/or feedback electronics. Nevertheless, the use of SQUID sensors in digital mode is of high interest for several applications due to their quantum accuracy associated to high linearity, and their potentially very high slew rate and dynamic range. The concept and performances of a low-Tc digital magnetometer based on Single-Flux-Quantum (SFQ) logic, fabricated at the FLUXONICS Foundry located at IPHT Jena, Germany, are given after a presentation of the context of development of superconductive digital magnetometers. The sensitivity, limited to one magnetic single flux quantum, and a dynamic range of 76 dB, that corresponds to an upper limit of the magnetic field amplitude higher than 5 µT, have been measured along with overnight stability. The dynamic range of about 2800 magnetic flux quanta Φ0 has been experimentally observed with an external magnetic field. First signatures of magnetic fields have been observed simultaneously with the ones of analog SQUIDs in the low noise environment of the Laboratoire Souterrain a Bas Bruit (LSBB) located in Rustrel, Provence, France.

  • A Unified Distortion Analysis of Nonlinear Power Amplifiers with Memory Effects for OFDM Signals

    Yitao ZHANG  Kiyomichi ARAKI  

     
    PAPER-Electromagnetic Theory

      Vol:
    E93-C No:4
      Page(s):
    489-496

    Nonlinear distortions in power amplifiers (PAs) generate spectral regrowth at the output, which causes interference to adjacent channels and errors in digitally modulated signals. This paper presents a novel method to evaluate adjacent channel leakage power ratio (ACPR) and error vector magnitude (EVM) from the amplitude-to-amplitude (AM/AM) and amplitude-to-phase (AM/PM) characteristics. The transmitted signal is considered to be complex Gaussian distributed in orthogonal frequency-division multiplexing (OFDM) systems. We use the Mehler formula to derive closed-form expressions of the PAs output power spectral density (PSD), ACPR and EVM for memoryless PA and memory PA respectively. We inspect the derived relationships using an OFDM signal in the IEEE 802.11a WLAN standard. Simulation results show that the proposed method is appropriate to predict the ACPR and EVM values of the nonlinear PA output in OFDM systems, when the AM/AM and AM/PM characteristics are known.

  • Statistical Evaluation of a Superconductive Physical Random Number Generator

    Tatsuro SUGIURA  Yuki YAMANASHI  Nobuyuki YOSHIKAWA  

     
    PAPER-Digital Applications

      Vol:
    E93-C No:4
      Page(s):
    453-457

    A physical random number generator, which generates truly random number trains by using the randomness of physical phenomena, is widely used in the field of cryptographic applications. We have developed an ultra high-speed superconductive physical random number generator that can generate random numbers at a frequency of more than 10 GHz by utilizing the high-speed operation and high-sensitivity of superconductive integrated circuits. In this study, we have statistically evaluated the quality of the random number trains generated by the superconductive physical random number generator. The performances of the statistical tests were based on a test method provided by National Institute of Standards and Technology (NIST). These statistical tests comprised several fundamental tests that were performed to evaluate the random number trains for their utilization in practical cryptographic applications. We have generated 230 random number trains consisting of 20,000-bits by using the superconductive physical random number generator fabricated by the SRL 2.5 kA/cm2 Nb standard process. The generated random number trains passed all the fundamental statistical tests. This result indicates that the superconductive random number generator can be sufficiently utilized in practical applications.

  • Multiple-Rate Quasi-Cyclic LDPC Codes Based on Euclidean Geometries

    Xueqin JIANG  Moon Ho LEE  Tae Chol SHIN  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E93-B No:4
      Page(s):
    997-1000

    This letter presents an approach to the construction of multiple-rate quasi-cyclic (QC) low-density parity-check (LDPC) codes based on hyperplanes (µ-flats) of two different dimensions in Euclidean geometries. The codes constructed with this method have the same code length, multiple-rate and large stopping sets while maintaining the same basic hardware architecture. The code performance is investigated in terms of the bit error rate (BER) and compared with those of the LDPC codes which are proposed in IEEE 802.16e standard. Simulation results show that our codes perform very well and have low error floors over the AWGN channel.

  • Design and Implementation of RSFQ Microwave Choppers for the Superconducting Quantum-Computing System

    Naoki TAKEUCHI  Yuki YAMANASHI  Nobuyuki YOSHIKAWA  

     
    PAPER-Digital Applications

      Vol:
    E93-C No:4
      Page(s):
    458-462

    We have been studying a superconducting quantum-computing system where superconducting qubits are controlled and read out by rapid single-flux- quantum (RSFQ) circuits. In this study, we designed and fabricated an RSFQ microwave chopper, which turns on and off an externally applied microwave to control qubit states with the time resolution of sub-nanosecond. The chopper is implemented in a microwave module and mounted in a dilution refrigerator. We tested the microwave chopper at 4.2 K. The amplitude of the output microwave was approximately 100 µV which is much larger than that of previously designed chopper. We also confirmed that the irradiation time can be controlled by RSFQ control circuits.

  • Automated Passive-Transmission-Line Routing Tool for Single-Flux-Quantum Circuits Based on A* Algorithm

    Masamitsu TANAKA  Koji OBATA  Yuki ITO  Shota TAKESHIMA  Motoki SATO  Kazuyoshi TAKAGI  Naofumi TAKAGI  Hiroyuki AKAIKE  Akira FUJIMAKI  

     
    PAPER-Digital Applications

      Vol:
    E93-C No:4
      Page(s):
    435-439

    We demonstrated an automated passive-transmission-line routing tool for single-flux-quantum (SFQ) circuits. The tool is based on the A* algorithm, which is widely used in CMOS LSI design, and tuned for microstrip/strip lines formed in the SRL 4-Nb layer structure. In large-scale SFQ circuits with 10000-20000 Josephson junctions, such as microprocessors, 80-90% of the wires can be automatically routed in about ten minutes. We verified correct operation above 40 GHz for an automatically routed 44 switch circuit from on-chip high-speed tests. The resulting circuit size and operating frequency were comparable to those of a manually designed result. We believe that the tool is useful for large-scale SFQ circuit design using conventional fabrication processes.

  • Proposal for Requirement Validation Criteria and Method Based on Actor Interaction

    Noboru HATTORI  Shuichiro YAMAMOTO  Tsuneo AJISAKA  Tsuyoshi KITANI  

     
    PAPER-Requirements Engineering

      Vol:
    E93-D No:4
      Page(s):
    679-692

    We propose requirement validation criteria and a method based on the interaction between actors in an information system. We focus on the cyclical transitions of one actor's situation against another and clarify observable stimuli and responses based on these transitions. Both actors' situations can be listed in a state transition table, which describes the observable stimuli or responses they send or receive. Examination of the interaction between both actors in the state transition tables enables us to detect missing or defective observable stimuli or responses. Typically, this method can be applied to the examination of the interaction between a resource managed by the information system and its user. As a case study, we analyzed 332 requirement defect reports of an actual system development project in Japan. We found that there were a certain amount of defects regarding missing or defective stimuli and responses, which can be detected using our proposed method if this method is used in the requirement definition phase. This means that we can reach a more complete requirement definition with our proposed method.

  • Diffusion of Electric Vehicles and Novel Social Infrastructure from the Viewpoint of Systems Innovation Theory

    Takaaki HASEGAWA  

     
    INVITED PAPER

      Vol:
    E93-A No:4
      Page(s):
    672-678

    This paper describes diffusion of electric vehicles and novel social infrastructure from the viewpoint of systems innovation theory considering both human society aspects and elemental technological aspects. Firstly, fundamentals of the systems innovation theory and the platform theory are mentioned. Secondly, discussion on mobility from the viewpoint of the human-society layer and discussion of electrical vehicles from the viewpoint of the elemental techniques are carried out. Thirdly, based on those, R & D, measures are argued such as establishment of the ubiquitous noncontact feeding and authentication payment system is important. Finally, it is also insisted that after the establishment of this system the super smart grid with temporal and spatial control including demand itself with the low social cost will be expected.

  • 100 GHz Demonstrations Based on the Single-Flux-Quantum Cell Library for the 10 kA/cm2 Nb Multi-Layer Process

    Yuki YAMANASHI  Toshiki KAINUMA  Nobuyuki YOSHIKAWA  Irina KATAEVA  Hiroyuki AKAIKE  Akira FUJIMAKI  Masamitsu TANAKA  Naofumi TAKAGI  Shuichi NAGASAWA  Mutsuo HIDAKA  

     
    PAPER-Digital Applications

      Vol:
    E93-C No:4
      Page(s):
    440-444

    A single flux quantum (SFQ) logic cell library has been developed for the 10 kA/cm2 Nb multi-layer fabrication process to efficiently design large-scale SFQ digital circuits. In the new cell library, the critical current density of Josephson junctions is increased from 2.5 kA/cm2 to 10 kA/cm2 compared to our conventional cell library, and the McCumber-Stwart parameter of each Josephson junction is increased to 2 in order to increase the circuit operation speed. More than 300 cells have been designed, including fundamental logic cells and wiring cells for passive interconnects. We have measured all cells and confirmed they stably operate with wide operating margins. On-chip high-speed test of the toggle flip-flop (TFF) cell has been performed by measuring the input and output voltages. The TFF cell at the input frequency of up to 400 GHz was confirmed to operate correctly. Also, several fundamental digital circuits, a 4-bit concurrent-flow shift register and a bit-serial adder have been designed using the new cell library, and the correct operations of the circuits have been demonstrated at high clock frequencies of more than 100 GHz.

  • Energy Efficient Communication Using Relationships between Biological Signals for Ubiquitous Health Monitoring

    Songjun LEE  Doosu NA  Bonmin KOO  

     
    LETTER

      Vol:
    E93-B No:4
      Page(s):
    842-845

    Wireless sensor networks with a star network topology are commonly applied for health monitoring systems. To determine the condition of a patient, sensor nodes are attached to the body to transmit the data to a coordinator. However, this process is inefficient because the coordinator is always communicating with each sensor node resulting in a data processing workload for the coordinator that becomes much greater than that of the sensor nodes. In this paper, a method is proposed to reduce the number of data transmissions from the sensor nodes to the coordinator by establishing a threshold for data from the biological signals to ensure that only relevant information is transmitted. This results in a dramatic reduction in power consumption throughout the entire network.

  • Analytical Inductance Calculation of Superconducting Stripline by Use of Transformation into Perfect Conductor Model

    Yoshinao MIZUGAKI  Akio KAWAI  Ryuta KASHIWA  Masataka MORIYA  Tadayuki KOBAYASHI  

     
    BRIEF PAPER

      Vol:
    E93-C No:4
      Page(s):
    486-488

    We present analytical expression for inductance of a superconducting stripline, a strip sandwiched by two superconducting ground planes. In our method, we utilize the analytical formula for a perfect-conducting stripline derived by Chang in 1976. To utilize Chang's formula, we first transform the structure of a superconducting stripline into that of a perfect-conducting stripline by reducing the thicknesses of the superconducting layers. The thickness reduction is "λ coth (t/λ)" for each (upper or lower) side, where λ and t are the field penetration depth and the layer thickness, respectively. Then, we apply Chang's formula to the transformed stripline model. The calculated results are in good agreement with the numerical and experimental results.

  • Increasing the Strength of Odors Produced by an Odor-Emitting Technology Using Odor Capsules

    Ayako NISHIMURA  Minoru SAKAIRI  Daisuke SUZUKI  

     
    PAPER-Multimedia Pattern Processing

      Vol:
    E93-D No:4
      Page(s):
    903-908

    We have developed an odor-emitting apparatus for application of odor to information technology. This apparatus consists of a chemical capsule cartridge including chemical capsules of odor ingredients and valves to control odor emission using an artificial metal muscle. In this method, multiple valves can be opened using the current for a single artificial muscle because the expansion and contraction time constant for the artificial muscles is large. We have developed a new multi-valve sequence mode that uses multiple odor capsules to increase odor strength, and we have been able to increase the strength produced by a factor of two. In addition, we evaluated the change in odor strength using a mock-up of the back seat of an automobile, and all of the ten test subjects reported sensing a stronger odor.

  • Continuous BP Decoding Algorithm for a Low-Density Parity-Check Coded Hybrid ARQ System

    Sangjoon PARK  Sooyong CHOI  Seung-Hoon HWANG  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E93-B No:4
      Page(s):
    993-996

    A continuous belief propagation (BP) decoding algorithm for a hybrid automatic repeat request (ARQ) system is proposed in this paper. The proposed continuous BP decoding algorithm utilizes the extrinsic information generated in the last iteration of the previous transmission for a continuous progression of the decoding through retransmissions. This allows the continuous BP decoding algorithm to accelerate the decoding convergence for codeword determination, especially when the number of retransmissions is large or a currently combined packet has punctured nodes. Simulation results verify the effectiveness of the proposed continuous BP decoding algorithm.

  • Some Constacyclic and Cyclic Codes Over Fq[u]/<ut+1>

    Reza SOBHANI  Morteza ESMAEILI  

     
    PAPER-Coding Theory

      Vol:
    E93-A No:4
      Page(s):
    808-813

    A generalized Gray map for codes over the ring Fq[u]/ is introduced, where q=pm is a prime power. It is shown that the generalized Gray image of a linear length-N (1-ut)-cyclic code over Fq[u]/ is a distance-invariant linear length-qtN quasi-cyclic code of index qt/p over Fq. It turns out that if (N,p)=1 then every linear code over Fq that is the generalized Gray image of a length-N cyclic code over Fq[u]/, is also equivalent to a linear length-qtN quasi-cyclic code of index qt/p over Fq. The relationship between linear length-pN cyclic codes with (N,p)=1 over Fp and linear length-N cyclic codes over Fp+uFp is explicitly determined.

2601-2620hit(6809hit)