The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Q(6809hit)

5441-5460hit(6809hit)

  • A Statistical Processing Approach to Interference Cancellation in W-CDMA Systems

    Mohammad-Reza SHIKH-BAHAEI  A. Hamid AGHVAMI  Ali GHORASHI  Nader ALI-AKBARIAN  

     
    PAPER

      Vol:
    E83-B No:8
      Page(s):
    1619-1630

    In this paper the application of a linear-quadratic processor is proposed for detection of each user's signal in a direct sequence code division multiple access scheme and, in particular, for W-CDMA systems. In this method, the knowledge of the user of interest, and some statistical knowledge of interfering transmitters' signals are used to detect the desired user's signal without needing exact "a priori" knowledge of the interfering signal parameters such as spreading sequences and signal powers. Parameters of the proposed processor, which are derived so as to maximise the signal-to-interference-plus-noise ratio (SINR), can generally be obtained by solving a system of linear equations for which many effective techniques exist. A model for this detection procedure is developed and shown--through analytical and numerical results--to offer a good compromise between complexity and quality of performance.

  • Evaluation of Subjective Communication Quality of Optical Mobile Communication Systems by Mean Opinion Score

    Yoshihiro ITOH  Kimihiro TAJIMA  Nobuo KUWABARA  

     
    PAPER

      Vol:
    E83-B No:8
      Page(s):
    1775-1782

    Since mobile communication systems using optical rays (optical mobile communication systems) do not radiate radio waves from the mobile terminals, they are expected to be used in environments containing sensitive electronic equipment. However, the placement and direction of the optical receivers must be suitably determined for mobile communication because light has high directivity. In optical mobile communication systems, the communication quality varies with the direction of the mobile terminal. Therefore, we examined the angle over which communication is possible at various measurement points and defined it as the communication angle. The mean opinion score (MOS) was obtained to assess the communication quality using the communication angle as a parameter. In this paper, the two situations, walking and sitting down, was considered the way optical mobile communication systems actually used. We found that for walking, when the communication angle was over 180 degrees, the MOS was over 3 and over 50% of users could communicate usefully. When used sitting down, the communication quality did not depend on the communication angle, but only on whether or not the user could communicate in the direction he/she was facing. Thus, if the communication angle in the service area is over 180 degrees, it is possible to communicate in practical situations, even while walking.

  • Homogeneous Transport in Silicon Dioxide Using the Spherical-Harmonics Expansion of the BTE

    Lucia SCOZZOLI  Susanna REGGIANI  Massimo RUDAN  

     
    PAPER-Gate Tunneling Simulation

      Vol:
    E83-C No:8
      Page(s):
    1183-1188

    A first-order investigation of the transport and energy-loss processes in silicon dioxide is worked out in the frame of the Spherical-Harmonics solution of the Boltzmann Transport Equation. The SiO2 conduction band is treated as a single-valley spherical and parabolic band. The relevant scattering mechanisms are modeled consistently: both the polar and nonpolar electron-phonon scattering mechanisms are considered. The scattering rates for each contribution are analyzed in comparison with Monte Carlo data. A number of macroscopic transport properties of electrons in SiO2 are worked out in the steady-state regime for a homogeneous bulk structure. The investigation shows a good agreement in comparison with experiments in the low-field regime and for different temperatures.

  • Modeling and Simulation of Tunneling Current in MOS Devices Including Quantum Mechanical Effects

    Andrea GHETTI  Jeff BUDE  Paul SILVERMAN  Amal HAMAD  Hem VAIDYA  

     
    PAPER-Gate Tunneling Simulation

      Vol:
    E83-C No:8
      Page(s):
    1175-1182

    In this paper we report on the modeling and simulation of tunneling current in MOS devices including quantum mechanical effects. The simulation model features an original scheme for the self-consistent solution of Poisson and Schrodinger equations and it is used for the extraction of the oxide thickness, by fitting CV curves, and the calculation of the tunneling current. Simulations and experiments are compared for different device types and oxide thicknesses (1.5-6.5 nm) showing good agreement and pointing out the importance of quantum mechanical modeling and the presence of many tunneling mechanisms in ultra-thin oxide MOS devices.

  • Agent-Oriented Software Modeling with UML Approach

    Sooyong PARK  Jintae KIM  Seungyun LEE  

     
    PAPER-Software Engineering

      Vol:
    E83-D No:8
      Page(s):
    1631-1641

    The use of intelligent agents is on the rise, fueled by the unprecedented growth in the Internet and web based applications. Consequently, agent-oriented software is becoming large and complex. To support a systematic development of such software, an agent-oriented software development methodology is necessary. This paper focuses on the modeling phase of agent-oriented software life cycle and, presents an approach for agent modeling consisting of Agent Elicitation, Intra, and Inter Agent modeling methods. Agent Elicitation deals with identifying and extracting agents from "classes" in the real world. Intra Agent Modeling involves expressing agent characteristics - Goal, Belief, Plan and Capability - whereas, Inter Agent modeling incorporates agent mobility and communication in a multi-agent system.

  • Optimum Source Codec Design in Coded Systems and Its Application for Low-Bit-Rate Speech Transmission

    Hong XIAO  Branka VUCETIC  

     
    PAPER

      Vol:
    E83-B No:8
      Page(s):
    1887-1895

    A generalized algorithm for designing an optimum VQ source codec in systems with channel coding is presented. Based on an AWGN channel model, the algorithm derives the distribution of the channel decoder soft-output and substitutes it in the expression for the system end-to-end distortion. The VQ encoder/decoder pair is then optimized by minimizing this end-to-end distortion. For a Gauss-Markov source, the proposed algorithm outperforms the conventional SOVQ source coding scheme by 5.0 dB in the decoded source SNR. Application of this algorithm for designing optimum low-bit-rate speech codec is given. A 4.0 kbps VQ based CELP codec is designed for performance evaluations, where all the CELP parameter encoder/decoder pairs are optimized by minimizing their end-to-end distortions, respectively. As a result, the speech distortion over the noisy channel is minimized. Subjective tests show that the proposed algorithm improves the decoded speech quality by 2.5 MOS relative to a regular SOVQ CELP speech coding system. The performances of the algorithm under channel mismatch conditions are also shown and discussed.

  • 2-GHz Band Cryogenic Receiver Front End for Mobile Communication Base Station Systems

    Toshio NOJIMA  Shoichi NARAHASHI  Tetsuya MIMURA  Kei SATOH  Yasunori SUZUKI  

     
    PAPER

      Vol:
    E83-B No:8
      Page(s):
    1834-1843

    An ultra low-noise and highly selective, experimental 2-GHz band cryogenic receiver front end (CRFE) has been newly developed for cellular base stations. It utilizes a high-Q superconducting filter, a very low noise cryogenic amplifier, and a highly reliable cooler that is very compact. Fundamental design of the CRFE is investigated. First, the equivalent noise temperature of the CRFE and the effect of improving CRFE sensitivity on base station reception are discussed. Next, essential technologies and fundamental characteristics of each component are described. Finally, influence of antenna noise, such as ground noise and man-made noise, is estimated through field tests both in urban and suburban areas.

  • Iterative Interference Suppression and Decoding in DS/FH Spread-Spectrum Systems

    Antonia M. TULINO  Ezio M. BIGLIERI  Savo GLISIC  

     
    INVITED PAPER

      Vol:
    E83-B No:8
      Page(s):
    1591-1601

    We examine the detection of coded hybrid direct-sequence frequency-hopped spread-spectrum signals in the presence of narrowband interference. Since blind interference suppression requires a reliable estimate of the data, while at the same time data decoding requires interference suppression, we advocate an iterative ("turbo") detection scheme whereby information is exchanged between the interference suppressor and the soft-input soft-output decoder. Several suppression schemes are examined and compared. Simulation results show that this new scheme is robust, i.e., exhibits good performance under a modicum of assumptions on the interference structure. Turbo codes and convolutional codes are compared, showing that the former perform better.

  • Performance Analysis of Packet-Level Scheduling in an IP-over-ATM Network with QoS Control

    Chie DOU  Cheng-Tien LIN  Shu-Wei WANG  Kuo-Cheng LEU  

     
    PAPER-Internet

      Vol:
    E83-B No:7
      Page(s):
    1534-1543

    In this paper, we study the performance of packet-level scheduling in IP-over-ATM networks with QoS control. That is, we assume the traffic is composed of multiple classes. We analyze the performance of different queue mappings between traffic types and the number of available traffic classes (priority queues). Since cells of a given packet are not bound to be transmitted back-to-back if multiple traffic classes are used, it is quite interesting to know the packet delay characteristic as well as the cell delay characteristic of respective traffic types in different queue mappings. Closed-form solutions for the mean cell waiting time and the mean packet waiting time of individual traffic types in different queue mappings are presented. The numerical results obtained in this paper can be helpful in understanding the behavior of IP-over-ATM networks which adopting packet-level scheduling and QoS control.

  • Frequency Pulling of Quasi-Periodic Oscillation in Forced van der Pol Oscillator

    Yasuo MORIMOTO  

     
    LETTER-Nonlinear Problems

      Vol:
    E83-A No:7
      Page(s):
    1479-1482

    The orbital portrait of quasi-periodic oscillation shows transition like change with the amplitude of external force in periodically forced van der Pol oscillator. This phenomenon originates from frequency pulling between self-sustained and periodic external oscillations induced by the frequency shift of former. We estimate this shift and succeed in deriving the transition points at which the portrait changes.

  • Frequency Sharing CDMA Wireless LAN Using Uplink Band of P-MP TDMA Broadband Wireless Access

    Takeo FUJII  Masao NAKAGAWA  

     
    PAPER-Wireless Communication Technology

      Vol:
    E83-B No:7
      Page(s):
    1435-1444

    In this paper, we propose a combination system of point to multipoint (P-MP) time division multiple access (TDMA) broadband wireless access (BWA) system and indoor wireless local area network (WLAN). In order to realize a high speed wireless communication, a wide bandwidth is required for both access lines and local area networks. The proposed system shares the frequency between BWA and WLAN to achieve an efficient use of frequency resources. This is based on the idea that an uplink band of the P-MP TDMA BWA system will provide relatively small interference slots, which are not used by subscriber stations nearby. In other words, there are useful small interference slots for another system using same frequency according to its position. Then we use such small interference slots for WLAN. In addition, direct sequence code division multiple access (DS-CDMA) can suppress such TDMA interference by spreading it over wide bandwidth. Therefore in the proposed system, DS-CDMA is used for WLAN in the same band with the BWA uplink. We also discuss WLAN packet error rate reduction techniques for this system. To confirm the availability of the proposed system, we evaluate the system performance by numerical analysis and computer simulation.

  • Sensing Film Characterization of Mixed Liquid Films for Odor Sensing System

    Junichi IDE  Yukihiko NAKAMURA  Takamichi NAKAMOTO  Toyosaka MORIIZUMI  

     
    PAPER-Sensor

      Vol:
    E83-C No:7
      Page(s):
    1046-1050

    Since odor sensing system is required in many fields, we have developed the system using QCM (Quartz Crystal Microbalance) sensor array and neural-network pattern recognition. In the present study, the mixed sensing films of two kinds of liquid-phase materials were characterized. As a result, it was found that the variety of sensing films were obtained by mixing two kinds of liquid-phase materials. The relative remnant of sensing film after repeated exposures was examined, and mixed films of two kinds of liquid-phase materials were found stable for the sensing materials.

  • Local Area Characterization of TTF-TCNQ Evaporated Films by Scanning Probe Microscope

    Kazuhiro KUDO  Masaaki IIZUKA  Shigekazu KUNIYOSHI  Kuniaki TANAKA  

     
    LETTER-Ultra Thin Film

      Vol:
    E83-C No:7
      Page(s):
    1069-1070

    We have developed a new type electrical probing system based on an atomic force microscope. This method enables us to measure simultaneously the surface topography and surface potential of thin films containing the crystal grains. The obtained local potential changes give an insight into conduction through the grains and their boundaries.

  • OEL Devices with Double Buffer Layers Composed of Two Types of LB Phthalocyanine

    Takayuki UCHIDA  Shigeru NAKANE  Takeshi NAKADA  Yujiro NAGATA  Masao OHTSUKA  

     
    LETTER-Electro Luminescence

      Vol:
    E83-C No:7
      Page(s):
    1026-1027

    Luminance and luminous efficiency of EL devices have been improved considerably by inserting double buffer layers composed of two types of Phthalocyanine deposited by the LB technique. This is considered to be caused by hole injection through relatively smooth energy levels.

  • Adaptive Motion Vector Quantization for Video Coding

    Wen-Jyi HWANG  Tung-Yuan TSAI  

     
    LETTER-Image

      Vol:
    E83-A No:7
      Page(s):
    1486-1492

    A novel adaptive motion vector quantization algorithm is presented in this letter. The algorithm effectively updates the set of motion vectors using gold-washing technique for block-matching according to the features of input image sequences. Simulation results show that the algorithm has both robust performance and low computational complexity for video coding.

  • A Cell Scheduler for Non-Real-Time Traffic with Service Fairness in ATM Networks

    Wen-Tsuen CHEN  Rong-Ruey LEE  

     
    PAPER-Switching

      Vol:
    E83-B No:7
      Page(s):
    1465-1473

    Non-real-time (NRT) services such as nrt-VBR, ABR and UBR traffic are intended for data applications. Although NRT services do not have stringent QoS requirements for cell transfer delay and cell delay variation, ATM networks should provide NRT services while considering other criteria to ensure an excellent performance such as cell loss ratio (CLR), buffer size requirement and service fairness. Service fairness means that networks should treat all connections fairly. That is, connections with low arrival rates should not be discriminated against. In addition, given a fixed buffer size for a connection, reducing the maximum number of cells in a buffer during the lifetime of a connection can lead to a low CLR due to buffer overflow. Thus, these criteria should be considered as much as possible when designing a cell scheduler to provide NRT services. Whereas most of the conventional cell scheduling schemes are usually appropriate for one performance criterion, but inappropriate for another one. In this work, we present a novel cell scheduling scheme, called buffer minimized and service fairness (BMSF), to schedule NRT services in ATM networks. Using probability constraints and selecting a connection with the longest buffer size to transmit first allow BMSF to attain a satisfactory performance with respect to maximum buffer size requirement, CLR, and service fairness in terms of the maximum buffer size and cell waiting delay criteria. Simulation results demonstrate that BMSF performs better than some conventional schemes in terms of these criteria, particularly when NRT services have diverse arrival rates. Thus, the BMSF scheme proposed herein can feasibly schedule NRT services in ATM networks.

  • An Approach to Vehicle Recognition Using Supervised Learning

    Takeo KATO  Yoshiki NINOMIYA  

     
    PAPER

      Vol:
    E83-D No:7
      Page(s):
    1475-1479

    To enhance safety and traffic efficiency, a driver assistance system and an autonomous vehicle system are being developed. A preceding vehicle recognition method is important to develop such systems. In this paper, a vision-based preceding vehicle recognition method, based on supervised learning from sample images is proposed. The improvement for Modified Quadratic Discriminant Function (MQDF) classifier that is used in the proposed method is also shown. And in the case of road environment recognition including the preceding vehicle recognition, many researches have been reported. However in those researches, a quantitative evaluation with large number of images has rarely been done. Whereas, in this paper, over 1,000 sample images for passenger vehicles, which are recorded on a highway during daytime, are used for an evaluation. The evaluation result shows that the performance in a low order case is improved from the ordinary MQDF. Accordingly, the calculation time is reduced more than 20% by using the proposed method. And the feasibility of the proposed method is also proved, due to the result that the proposed method indicates over 98% as classification rate.

  • Analysis of Computation Error in Antenna's Simulation by Using Non-Uniform Mesh FDTD

    Huiling JIANG  Hiroyuki ARAI  

     
    PAPER-Antenna and Propagation

      Vol:
    E83-B No:7
      Page(s):
    1544-1553

    Numerical modeling of realistic engineering problems using the FDTD technique often requires smaller cell size, higher simulation accuracy and less computation resources. In this paper, we describe a high performance three-dimensional FDTD algorithm by using non-uniform mesh that allows flexible cell size to improve the accuracy of modeling, and computation resource also can be reduced greatly. In this paper, we will first explain the detailed formulation and algorithm of Non-Uniform Mesh. Next, examination of the reflection error from fine-coarse boundary because of the discontinuity is carried out. Then some test geometry are solved by using both uniform mesh and non-uniform mesh FDTD scheme to validate the results and check the accuracy of solution. We also examine the calculation accuracy due to mesh size ratio, and then investigation of how to determine the fine mesh region surrounding the object for a most small computation error will be carried out in this paper. In addition, the algorithm is demonstrated for several different antenna geometry.

  • Image Sequence Retrieval for Forecasting Weather Radar Echo Pattern

    Kazuhiro OTSUKA  Tsutomu HORIKOSHI  Haruhiko KOJIMA  Satoshi SUZUKI  

     
    PAPER

      Vol:
    E83-D No:7
      Page(s):
    1458-1465

    A novel method is proposed to retrieve image sequences with the goal of forecasting complex and time-varying natural patterns. To that end, we introduce a framework called Memory-Based Forecasting; it provides forecast information based on the temporal development of past retrieved sequences. This paper targets the radar echo patterns in weather radar images, and aims to realize an image retrieval method that supports weather forecasters in predicting local precipitation. To characterize the radar echo patterns, an appearance-based representation of the echo pattern, and its velocity field are employed. Temporal texture features are introduced to represent local pattern features including non-rigid complex motion. Furthermore, the temporal development of a sequence is represented as paths in eigenspaces of the image features, and a normalized distance between two sequences in the eigenspace is proposed as a dissimilarity measure that is used in retrieving similar sequences. Several experiments confirm the good performance of the proposed retrieval scheme, and indicate the predictability of the image sequence.

  • Bandwidth Routing in Ad Hoc Wireless Networks

    Chunhung Richard LIN  Jain-Shing LIU  

     
    PAPER-Wireless Communication Switching

      Vol:
    E83-B No:7
      Page(s):
    1497-1508

    The emergence of nomadic applications have recently generated a lot of interest in wireless network infrastructures which support multimedia services. In this paper, we propose a bandwidth routing algorithm for multimedia support in a multihop wireless network. This network can be interconnected to wired networks (e. g. ATM or Internet) or stand alone. Our bandwidth routing includes bandwidth calculation and reservation schemes. Under such a routing algorithm, we can derive a route to satisfy bandwidth requirement for quality-of-service (QoS) constraint. At a source node, the bandwidth information can be used to decide to accept a new call or not immediately. This is specially important to carry out a fast handoff when interconnecting to an ATM backbone infrastructure. It enables an efficient call admission control. The simulation results show that the bandwidth routing algorithm is very useful in extending the ATM virtual circuit service to the wireless network. Different types of QoS traffic can be integrated in such a dynamic radio network with high performance.

5441-5460hit(6809hit)