The search functionality is under construction.

Keyword Search Result

[Keyword] RWA(411hit)

181-200hit(411hit)

  • Multicast Design Method Using Multiple Shared-Trees in Optical WDM Networks

    Yusuke HIROTA  Hiroaki HONDA  Hideki TODE  Koso MURAKAMI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E95-B No:2
      Page(s):
    370-381

    In next-generation networks, ultra-high speed transfer capability will become necessary to support a variety of advanced multimedia services. The Optical Wavelength Division Multiplexing (WDM) network is seen as one of promising networks. To deal with various multimedia services, the network should support not only unicast transmission but also multicast transmission. However, IP multicast has several problems, for example, all routers must have multicast functions. IP multicast needs routers with high overheads and excessive energy consumption. Hence, optical multicasting in optical WDM networks is a promising solution for future internet services. A tree-shared multicasting concept has been proposed to support multicast transmissions in optical WDM networks. This method assembles multiple multicast traffic streams into one burst and the burst is delivered using a shared-tree. However, this method can not be applied to dynamic multicasting. This paper proposes a novel WDM multicast design method for dynamic traffic demand using multiple shared-trees, which includes shared-tree generation/selection and wavelength assignment, for the purpose of simplifying the routing process and receiving multicast traffic efficiently. We evaluate its performance from the viewpoints of the burst loss probability and the number of redundant and useless transfers whose data is discarded at the egress edge nodes.

  • On the Diversity-Multiplexing Tradeoff of the Half-Duplex DDF MIMO Relay Protocol

    Eunchul YOON  Sun-Yong KIM  Suhan CHOI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:2
      Page(s):
    540-550

    The analytical derivation of the diversity-multiplexing tradeoff (DMT) for a half-duplex dynamic decode and forward (DDF) MIMO relay protocol has been regarded as an open problem. Recently, however, a minimization problem setting has been found, the solution of which corresponds to the DMT function for a half-duplex DDF MIMO relay protocol. In this paper, the DMT functions for three special half-duplex DDF MIMO relay protocols using two antennas at two of three nodes, source, relay, and destination nodes, and a single antenna at the other node are derived first. Then, the DMT function for a special half-duplex DDF MIMO relay protocol using two antennas at every node is derived. These DDF MIMO relay protocols are compared with one another and with some NAF MIMO relay protocols by simulation.

  • Diversity-Multiplexing Tradeoff Analysis for a Dynamic Decode and Forward Relay Protocol with MIMO Channels

    Taeyoung KIM  Sun-Yong KIM  Eunchul YOON  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:1
      Page(s):
    329-332

    In this letter, the diversity-multiplexing tradeoff (DMT) function for a special half-duplex dynamic decode and forward (DDF) relay protocol using two source-antennas, two destination-antennas, and more than two relay-antennas is derived. It is shown that the performance of the DDF relay protocol can be substantially improved by increasing the relay-antenna number, but only for low multiplexing gains.

  • Pre-Compensation Clutter Range-Dependence STAP Algorithm for Forward-Looking Airborne Radar Utilizing Knowledge-Aided Subspace Projection

    Teng LONG  Yongxu LIU  Xiaopeng YANG  

     
    PAPER-Radars

      Vol:
    E95-B No:1
      Page(s):
    97-105

    The range-dependence of clutter spectrum for forward-looking airborne radar strongly affects the accuracy of the estimation of clutter covariance matrix at the range under test, which results in poor clutter suppression performance if the conventional space-time adaptive processing (STAP) algorithms were applied, especially in the short range cells. Therefore, a new STAP algorithm with clutter spectrum compensation by utilizing knowledge-aided subspace projection is proposed to suppress clutter for forward-looking airborne radar in this paper. In the proposed method, the clutter covariance matrix of the range under test is firstly constructed based on the prior knowledge of antenna array configuration, and then by decomposing the corresponding space-time covariance matrix to calculate the clutter subspace projection matrix which is applied to transform the secondary range samples so that the compensation of clutter spectrum for forward-looking airborne radar is accomplished. After that the conventional STAP algorithm can be applied to suppress clutter in the range under test. The proposed method is compared with the sample matrix inversion (SMI) and the Doppler Warping (DW) methods. The simulation results show that the proposed STAP method can effectively compensate the clutter spectrum and mitigate the range-dependence significantly.

  • Digital PID Control Forward Type Multiple-Output DC-DC Converter

    Fujio KUROKAWA  Tomoyuki MIZOGUCHI  Kimitoshi UENO  Hiroyuki OSUGA  

     
    PAPER-Energy in Electronics Communications

      Vol:
    E94-B No:12
      Page(s):
    3421-3428

    The purpose of this paper is to present the static and dynamic characteristics and a smart design approach for the digital PID control forward type multiple-output dc-dc converter. The central problem of a smart design approach is how to decide the integral coefficient. Since the integral coefficient decision depends on the static characteristics, whatever integral coefficient is selected will not be yield superior dynamic characteristics. Accordingly, it is important to identify the integral coefficient that optimizes static as well as dynamic characteristics. In proposed design approach, it set the upper and lower of input voltage and output current of regulation range. The optimal integral coefficient is decided by the regulation range of the static characteristics and the dynamic characteristics and then the smart design approach is summarized. As a result, the convergence time is improved 50% compared with the conventional designed circuit.

  • Two-Stage Configurable Decoder Model for Domain Specific FEC Decoder Design

    Ittetsu TANIGUCHI  Ayataka KOBAYASHI  Keishi SAKANUSHI  Yoshinori TAKEUCHI  Masaharu IMAI  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E94-A No:12
      Page(s):
    2659-2668

    Forward error correction (FEC) is one of important and heavy tasks for wireless communication. Leading edge mobile embedded systems usually support not only one FEC standard, but multiple FEC standards in order to adapt to various wireless communication standards. In this paper, we propose two-stage configurable decoder model (2-Stage CDM) for multiple FEC standards for Viterbi and Turbo coding which have a variation under the constraint length, coding rate, etc. Proposed decoder model realizes a decoder instance which supports dedicated multiple FEC standards, and rapid design for domain specific decoder is realized. Proposed decoder model is configurable in two stages: at hardware generation time and at runtime, and designers can easily specify these specifications by various design parameters. Experimental results show proposed two-stage configurable decoder model supports various domain specific FEC decoder including existing decoder, and the decoder instances based on proposed 2-Stage CDM have sufficient throughput for each communication standard and reasonable area overhead compared with existing decoder.

  • Frequency Offset Amplify-and-Forward Relay in OFDM System

    Ayana SUZUKI  Yukitoshi SANADA  Mamiko INAMORI  

     
    PAPER

      Vol:
    E94-B No:12
      Page(s):
    3289-3295

    In the fourth generation mobile communication system, the frequency band higher than the bands already used for IMT-2000 has been assigned. However, the higher radio frequency increases the propagation loss. To cope with the propagation loss, relay transmission has been investigated. In this paper, a transmission diversity scheme with frequency offset in amplify-and-forward (AF) relaying is proposed. In this scheme, the frequency of the OFDM signal is shifted at the relay station. A different amount of frequency offset is given in each relay station and the signals from the relay stations are separated and combined by MMSE detection at the base station. The numerical results obtained through computer simulation show that diversity is realized and the BER performance is improved by 1-2 dB at the BER of 10-2. When the number of the RSs increases, more BER improvement is achieved.

  • Subcarrier Allocation for Physical-Layer Security in Cooperative OFDMA Networks

    Chunxiao CAI  Yueming CAI  Weiwei YANG  

     
    LETTER

      Vol:
    E94-B No:12
      Page(s):
    3387-3390

    Secrecy on the physical layer is receiving increased research interest due to its theoretical and practical importance. In this letter, a subcarrier allocation scheme is proposed for physical-layer security in cooperative orthogonal frequency division multiple access (OFDMA) networks that use the Amplify-and-Forward (AF) strategy. We consider the subcarrier pairing and assignment to maximize overall system rates subject to a secrecy level requirement. Monte Carlo simulations are carried out to validate our analysis.

  • A Low-Interference Relay Selection for Decode-and-Forward Cooperative Network in Underlay Cognitive Radio

    Chih-Wen (Wenson) CHANG  Po-Hsun LIN  

     
    PAPER

      Vol:
    E94-B No:12
      Page(s):
    3239-3250

    In the underlay decode-and-forward (DaF) cooperative cognitive radio (CR) network, an optimal relay can be selected by the conventional max-min selection on the condition of not violating the interference temperature (IT) constraint. However, the max-min selection may cause some extra amount of interference to the primary system (PS) such that the so-called transfer ratio (TR) may be lower. Note that TR is newly defined as the ratio of the secondary system's (SS's) capacity gain to the PS's capacity loss due to the activities of SS. In order to improve the TR value, we are motivated by the pricing function in game theory to propose a novel low-interference relay selection by taking the impacts of the interference from SS to PS into consideration. Using the low-interference selection, however, it will not always allow the optimal relay to be picked. To clarify this phenomenon, the still optimal probability is defined as the probability of selecting the optimal relay by the proposed scheme. In addition, the impacts of the low-interference selection on the SS's capacity and outage probability are also analyzed. The simulation results prove that compared with the max-min selection, the proposed scheme can achieve higher TR values as well as the total capacity which also indicates that a higher spectrum efficiency can be achieved. It is believed that the results of this paper can provide an alternative viewpoint of evaluating the spectrum efficiency and inspire more interesting and important research topics in the future.

  • A 4 Gb/s Adaptive FFE/DFE Receiver with a Data-Dependent Jitter Measurement

    Tae-Ho KIM  Yong-Hwan MOON  Jin-Ku KANG  

     
    PAPER-Electronic Circuits

      Vol:
    E94-C No:11
      Page(s):
    1779-1786

    This paper presents an adaptive FFE/DFE receiver with an algorithm that measures the data-dependent jitter. The proposed adaptive algorithm determines the compensation level by measuring the input data-dependent jitter. The adaptive algorithm is combined with a clock and data recovery phase detector. The receiver is fabricated in with 0.13 µm CMOS technology, and the compensation range of equalization is up to 26 dB at 2 GHz. The test chip is verified for a 40 inch FR4 trace and a 53 cm flexible printed circuit channel. The receiver occupies an area of 440 µm 520 µm and has a power dissipation of 49 mW (excluding the I/O buffers) from a 1.2 V supply.

  • Effects of Multiple Antennas on Outage Performance of Decode-and-Forward Cooperative Networks with Relay Selection

    Wooju LEE  Dongweon YOON  Zhengyuan XU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:11
      Page(s):
    3155-3159

    In this paper, we consider multiple source and destination antennas based on relay selection scheme to improve the end-to-end outage performance for decode-and-forward cooperative networks. We derive an exact closed-form expression of the outage probability for the proposed system over a Rayleigh fading channel and describe the diversity-multiplexing tradeoff of the system. We then analyze the effects of the number of source and destination antennas on the outage probabilities and diversity-multiplexing tradeoffs.

  • Overhead Reduction in Coordinated Beamforming for Multiuser MIMO-OFDM Systems with Limited Feedforward

    Leonel SORIANO-EQUIGUA  Jaime SANCHEZ-GARCIA  Chan-Byoung CHAE  Robert W. HEATH, Jr.  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:11
      Page(s):
    3168-3171

    This letter proposes a method for choosing the best quantized beamforming vector that represents a subcarrier group, for coordinated beamforming in the downlink of multiuser multiple input multiple output-orthogonal frequency division multiplexing systems. The correlation between subcarriers is exploited for reducing the feedforward overhead, while maximizing the sum rate.

  • Diversity Analysis of MIMO Decode-and-Forward Relay Network by Using Near-ML Decoder

    Xianglan JIN  Dong-Sup JIN  Jong-Seon NO  Dong-Joon SHIN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:10
      Page(s):
    2828-2836

    The probability of making mistakes on the decoded signals at the relay has been used for the maximum-likelihood (ML) decision at the receiver in the decode-and-forward (DF) relay network. It is well known that deriving the probability is relatively easy for the uncoded single-antenna transmission with M-pulse amplitude modulation (PAM). However, in the multiplexing multiple-input multiple-output (MIMO) transmission, the multi-dimensional decision region is getting too complicated to derive the probability. In this paper, a high-performance near-ML decoder is devised by applying a well-known pairwise error probability (PEP) of two paired-signals at the relay in the MIMO DF relay network. It also proves that the near-ML decoder can achieve the maximum diversity of MSMD+MR min (MS,MD), where MS, MR, and MD are the number of antennas at the source, relay, and destination, respectively. The simulation results show that 1) the near-ML decoder achieves the diversity we derived and 2) the bit error probability of the near-ML decoder is almost the same as that of the ML decoder.

  • A Wide Tuning Range CMOS Quadrature Ring Oscillator with Improved FoM for Inductorless Reconfigurable PLL

    Ramesh K. POKHAREL  Shashank LINGALA  Awinash ANAND  Prapto NUGROHO  Abhishek TOMAR  Haruichi KANAYA  Keiji YOSHIDA  

     
    PAPER-Active Devices and Circuits

      Vol:
    E94-C No:10
      Page(s):
    1524-1532

    This paper presents the design and implementation of a quadrature voltage-controlled ring oscillator with the improved figure of merit (FOM) using the four single-ended inverter topology. Furthermore, a new architecture to prevent the latch-up in even number of stages composed of single-ended ring inverters is proposed. The design is implemented in 0.18 µm CMOS technology and the measurement results show a FOM of -163.8 dBc/Hz with the phase noise of -125.8 dBc/Hz at 4 MHz offset from the carrier frequency of 3.4 GHz. It exhibits a frequency tuning range from 1.23 GHz to 4.17 GHz with coarse and fine frequency tuning sensitivity of 1.08 MHz/mV and 120 kHz/mV, respectively.

  • Performance Analysis for the Amplify-and-Forward Two-Way Cooperative Relaying Networks

    Ha Nguyen VU  Hyung Yun KONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:9
      Page(s):
    2663-2666

    In this letter, we analyze the amplify-and-forward (AF) two-way cooperative relaying scheme with regard to the average data transmission rate and the symbol error probability. By investigating the Moment-Generating function (MGF) and the k-th moment of “extra-harmonic” mean of two variables, we derive an exact closed-form expression for the symbol error probability (SEP) and the approximate average sum rate. Analysis results show that the proposed scheme achieves higher SEP performance as well as a lower data rate than the conventional AF two-way scheme. Additionally, it also matches the SEP performance of the one-way AF cooperative scheme but attains higher sum rate. Finally, Monte Carlo simulation results will be shown to confirm our analytical results.

  • Achieving Fairness without Loss of Performance in Selection Cooperation of Wireless Networks

    Xingyang CHEN  Lin ZHANG  Yuhan DONG  Xuedan ZHANG  Yong REN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:8
      Page(s):
    2406-2410

    This paper introduces a random selection cooperation scheme that takes the Decode-and-Forward (DF) approach to solve the unfairness problem in selection cooperation. Compared to previous work which obtained fairness but introduced performance loss, the proposed scheme guarantees fairness without performance loss. Its essence is to randomly select from the relays that can ensure the successful communication between the source and the destination, rather than to select the best relay. Both a theoretical analysis and simulation results confirm that the proposed scheme could achieve fairness and introduce no performance loss. We also discuss the conditions under which the proposed scheme is practical to implement.

  • Stabilization of a Class of Feedforward and Non-feedforward Nonlinear Systems with a Large Delay in the Input via LMI Approach

    Ho-Lim CHOI  

     
    LETTER-Systems and Control

      Vol:
    E94-A No:8
      Page(s):
    1753-1755

    We consider a stabilization problem of a class of input-delayed nonlinear systems that have not only feedforward, but also some non-feedforward nonlinearity. While there are some existing results that deal with input-delayed non-feedforward nonlinear systems, they often assume a small input delay. It has been often the case that for a large input delay, the results are limited to only feedforward systems. In this letter, combined with the LMI approach in [3] and the reduction method in [5], we show that some feedforward and non-feedforward systems with a large delay in the input can be stabilized via the proposed controller.

  • Performance Analysis of AF Cooperative Networks with Nth User Selection over Rayleigh Fading Channel

    Xuefang LIU  Qinghai YANG  Fenglin FU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:8
      Page(s):
    2423-2426

    In this letter, we investigate the Nth-best user selection scheme for amplify-and-forward cooperative systems over Rayleigh fading channels. We deduce the probability density function, the cumulative density function, and the moment generating function of the end-to-end signal-to-noise ratio of the system. Then, the respective closed-form expressions of the average symbol error probability and the outage probability at the destination are derived. The diversity order obtained in the scheme increases with user number but becomes less as the selection sequence number N increases. Simulation results verify the analytical results.

  • Precoding and Power Allocation for Full-Duplex MIMO Relays

    Jong-Ho LEE  Oh-Soon SHIN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:8
      Page(s):
    2316-2327

    In this paper, we propose precoding and power allocation strategies for full-duplex multiple input multiple output (MIMO) relays. The precoding scheme for full-duplex MIMO relays is derived based on the block diagonalization (BD) method to suppress the self-interference in the full-duplex relaying so that each relay station (RS) can receive multiple data streams from the base station (BS), while forwarding the decoded data streams to mobile stations (MS's) simultaneously. We also develop the optimal power allocation scheme for full-duplex MIMO relays. Numerical results verify that the proposed scheme provides substantial performance improvement compared with the conventional half-duplex relay (HDR), if sufficient physical isolation between the transmit and receive antennas is ensured such that the proposed full-duplex MIMO relays operate in a tolerable self-interference range.

  • Synchronous Demodulation of Coherent 16-QAM with Feedforward Carrier Recovery Open Access

    Ali AL-BERMANI  Christian WORDEHOFF  Sebastian HOFFMANN  Timo PFAU  Ulrich RUCKERT  Reinhold NOE  

     
    INVITED PAPER

      Vol:
    E94-B No:7
      Page(s):
    1794-1800

    We present the recovery of 2.5 Gb/s synchronous 16-point quadrature amplitude modulation data in real-time for an linewidth-times-symbol-duration ratio of 0.00048 after transmission over 1.6 km standard single mode fiber.

181-200hit(411hit)